
Information systems modeling

Tomasz Kubik

SOA (Service-Oriented Architecture)

• Basic scenario
– a client discovers a web service

in the network and analyses its
description provided in the
corresponding WSDL document,

– a client learns from the
description about operations
provided and data types used by
the service,

– a client decides, which
operations he or she is
interested in, and builds the
application code for it

– if a client wants and can, it
invokes chosen service’s
operations.

WSDL - Web Services Description

Language

• an XML application, developed by W3C, used to write a
formal, technical description of web service interfaces.

• provides distinct definitions and terminologies used in
web service description

• a schema for services declarations as collections of
network endpoints, or ports, offering operations, and
exchanging data through messages

• separates abstract definitions from concrete use or
instance

• enough to generate code partially, for a client or a server
side of the service, in an automatic manner (it is also
possible to generate WSDL description on a base of
existing code of web service implementation).

WSDL versioning

• Two major versions of WSDL specification
– WSDL 1.1 (old W3C proposition, but still used),

– WSLD 2.0 (current W3C recommendation)

• The WSDL 2.0 got its name after renaming WSDL 1.2
because of some substantial differences between 1.1
and 1.2 versions

• WSDL 2.0 accepts binding to all the HTTP request
methods (not only GET and POST as in WSDL 1.1) so it
better suits for RESTful web services implementation.

• There is also SOAP 1.1 binding recommendation
available. However, WSDL 1.1 has better support from
software development tools.

Facts

Specification Publication date Status

WSDL 1.1 Note 15 Mar 2001 Draft /Proposal

WSDL Usage Scenarios 04 Jun 2002 Draft /Proposal

WSDL Requirements 28 Oct 2002 Draft /Proposal

WSDL Architecture 11 Feb 2004 Draft /Proposal

WSDL Glossary 11 Feb 2004 Draft /Proposal

WSDL Usage Scenarios 11 Feb 2004 Draft /Proposal

WSDL 1.2 Core Language 11 Jun 2003 Draft /Proposal

WSDL 1.2 Message Patterns 11 Jun 2003 Draft /Proposal

WSDL 1.2 Bindings 11 Jun 2003 Draft /Proposal

WSDL 2.0 Primer 26 Jun 2007 Recommendation

WSDL 2.0 Core Language 26 Jun 2007 Recommendation

WSDL 2.0 Adjuncts 26 Jun 2007 Recommendation

WSDL 2.0 SOAP 1.1 Binding 26 Jun 2007 Recommendation

WSDL 2.0 RDF Mapping 26 Jun 2007 Recommendation

Web Services Addressing Core 09 May 2006 Recommendation

Web Services Addressing SOAP Binding 09 May 2006 Recommendation

Web Architecture 15 Dec 2004 Draft /Proposal

Structure of WSDL 1.1 document

• The abstract section includes: port types, messages and
types constructs.
– Port types are abstract collections of supported operations.

– Operations refer to messages that are abstract descriptions of
the data being exchanged.

– Operations and messages are bound to a concrete network
protocol and message format.

• The concrete section includes: binding that defines the
concrete protocol and data format specifications for a
particular port type.
– Port definition associates a network address with a reusable

binding.

– A collection of ports defines a service.

Structure of WSDL 2.0 document

• The abstract section includes: interfaces and types
constructs.
– An interface collects together supported operations.

– An operation associates a message exchange pattern with one
or more messages.

– Messages are described using a type system (usually XML
Schema) for defining bodies of inputs, outputs and faults.

• The concrete section includes: binding that specifies
transport and wire format details for one or more
interfaces.
– An endpoint associates a network address with a binding.

– A group of endpoints that implement a common interface defines
a service.

message

portType

operation
input

output

fault

interface

binding

service

binding

service
port endpoint

operation
input

output

infault

outfault

fault

MEP

Operation
style

definitions description

A
b

s
tr

a
c
t

s
e

c
ti
o

n
C

o
n

c
re

te
s
e

c
ti
o

n

WSDL 1.1 WSDL 2.0

types

Element decl.

Type def.

types

Element decl.

Type def.

WSDL 1.1

<definitions>

• This is a root element of WSDL
document. It works as a container for
several fragments (nested elements) that
forms together a full service description.

• It provides namespace declarations valid
for its content along with XML
namespace prefixes.

<documentation>

• Element documentation is used to provide a

human readable description. This element can

assists (be nested in) any other element

appearing in a WSDL document.

<import>

• This elements works like #include

preprocessor directive in C programming

language. It allows splitting the description

into independent documents and integrating

them in one, main document as necessary.

This improves the modularity and legibility

definition of the service. The import has two

attributes: namespace and location.

<types>

• This element is a container for data types

definitions used in <message> elements.

It contains zero or more sub-elements

<schema>, which must adhere to the

rules for XML Schema documents. The

declared types can be complexType or

simpleType.

<message>

• This element defines the format of

messages exchanged between a client

and a web service. It may represent a

query, a response or a signal on error. It

refers to the data types defined in

<types>. The data contained in

<message> are abstract. A message

consists of one or more sub-elements

<part>

<operation>

• is an abstract definition of an operation supported by a
Web service

• there can be several input, output and fault messages
defined declared using nested <input>, <output> and
<fault> elements. These elements refer to <message>
elements defined in the same WSDL document or
imported from external documents.

• the order of messages should follows so called Message
Exchange Patterns (MEP).

<binding>

• This elements is used to specify a concrete
protocol binding and data encoding for a given
<portType> (i.e. it provides binding to HTTP,
SOAP MIME or, possibly, custom protocols).

• Since in the WSDL document <operation>
elements are already defined, the element
<binding> maps the abstract definitions of
operations, their input and output messages, to
the appropriate protocol used by a web
service.

<portType>

• This element specifies a set of operations

supported by the service endpoint (it provides

a unique identifier to a group of operations

supported by a single endpoint). Each

<operation> is defined individually.

<service>

• This element appears typically at the end of

the WSDL document. It defines a concrete web

service endpoint with URL to the service

location (there is no other occurrences of such

URL before service element). <service>

element groups one or more <port> elements.

A single <port> element represents an

endpoint (access point) to a web service.

WSDL 2.0

<description>

• The <description> is a main element of a WSDL
document. The content of this element should conform
to the following pattern:

<description

targetNamespace="xs:anyURI" >

<documentation />*

[<import /> | <include />]*

<types />?

[<interface /> | <binding /> | <service

/>]*

</description>

<documentation>

• A human readable description in the WSDL 2.0

documents is provided within optional

<documentation> elements. These elements can

appear in all elements included in a <description>.

The <documentation> syntax is following:

<documentation>

[extension elements]*

</documentation>

<include> and <import>

• Element <include> allows to include components
defined in other WSDL documents in the current
interface definition. Element <include> has a
mandatory location attribute which specifies the
location of the external, included WSDL documents.
The target namespace of attached WSDL descriptions
must match the target namespace of the base
document.

• Element <import> has a similar meaning as <include>.
The difference is that the imported WSDL document
can have different target namespace then the base
document. This element has a mandatory namespace
attribute for an imported element and an optional
location attribute. Standard content of this element is
as follows:

<types>

• Element <types> serves as a place for definitions of
data types used by exchanged messages.

• XML Schema is preferred as typing language, although
it is possible to use also the DTD or RELAX NG.

• The use of custom schemas relies on importing them
(with the use of <xs:import>) or embedding them within
<types> element of the WSDL document (using
<xs:schema>).

• The elements from imported or included schemas can
be referenced by using their QName.

<interface>

• Element <interface> contains <operation> elements,
which group definitions of sequences of messages
sent to and from the service.

• It may contain <fault> elements with errors
descriptions.

• It has mandatory attribute name (the value of which is
a name of the interface), and two optional attributes:
extends (which lists the interfaces that the interface
extends) and styleDefault (which contains the default
style used to create element declarations for all
interface operations).

<fault>

• This element serves as an abstract
description of a fault that MAY occur
during invocation of an operation of an
interface.

• The two attributes, name and element, are
used, respectively, to declare the name of
the fault and indicate the contents of the
fault message.

<operation>

• This element describes interaction with a service
by listing messages exchanged between the
service and its user or users

• It may contain such elements as: <input>,
<output>, <infault>, and <outfault>.

• The list of attributes of the <operation> consists
of the following items: style, safe, pattern (all
three are optional), and name (required).

<input> and <output>

• These elements are message containers used in
normal communication. Message exchange
pattern includes rules on how to generate
messages with information about the error.

• Elements <infault> and <outfault> are used as
containers for messages with errors. Signaling
an error might terminate message exchange
pattern. The value of their mandatory
messageLabel attribute indicates the role of
messages they carry.

<binding>

• This element contains binding declarations necessary to
access the service. These declarations describe a
message format and transmission protocol for
communication with an endpoint (including encoding of
input and output parameters implemented in the
service).

• The relevant declarations are described in the
mandatory element <operation>.

• once defined a <binding> can be used many times in the
definitions of various interfaces.

<service>

• Element <service> contains a set of

<endpoint> elements, determining the

places where the service has been

implemented. An interface attribute of the

service contains the name of the

interface, whose endpoints are just being

described.

<endpoint>

• Element <endpoint> is used to define an

endpoint.

• Two of its attributes - name (name of the

endpoint) and binding (representing binding) are

required.

• The third attribute, address (address of the

service that implements the interface) is

optional.

T.Kubik: ISM

Extensible Markup Language (XML)

• metalanguage used to represent and

manipulate data elements

• can be used to encode data transmitted

from one place to another

• using XML Schema one can expresses

strict hierarchical relationships immediately,

without a conceptual data model

T.Kubik: ISM

Extensible Markup Language (XML)

• metalanguage used to represent and manipulate data elements

• hundreds XML-based languages have been developed:

– RDF/XML, Relax NG, XML Schema, SOAP, SVG …

(https://en.wikipedia.org/wiki/List_of_XML_markup_languages)

• commonly used to encode data transmitted from one place

• associated Internet media type, formerly known as MIME type

(Multipurpose Internet Mail Extensions)

– for xml documents without any special semantics

• application/xml

• text/xml

– for xml documents written in XML-based languages

• media types ending in +xml, for example image/svg+xml for SVG

• standards

– https://www.w3.org/TR/?tag=xml&status=rec

XML syntax

• Processor and application
– processor analyses the markup and passes structured information to an application

• Tag
– begins with < and ends with > and comes in three flavours:

• start-tag, such as <element>,

• end-tag, such as </element>

• empty-element tag, such as <element />

• Attribute
– consisting of a name–value pair that exists within a start-tag or empty-element tag

• attributename="attribute-value"

• Element
– a logical document component

– begins with a start-tag and ends with a matching end-tag or consists only of an empty-
element tag

– all characters between the start-tag and end-tag, if any, are the element's content,

– the content may contain markup, including other elements, which are called child
elements.

T.Kubik: ISM

XML document structure

• Non-empty element
<tag attributename="attribute-value">content</tag>

• Empty element
<tag attributename="attribute-value"/>

T.Kubik: ISM

procesor

directive

root

element

nested

element

element’s content

attribute attribute’s

value

<?xml version="1.0" encoding="UTF-8"?>

<Message date="2019-04-16">

<Greeting>

Hello!

</Greeting>

</Message>

Well-formed and Valid documents

• Well-formed xml document
– there is only one root element

– all other elements are cleanly nested (overlapping
elements are not allowed)

– non-empty element must have both: start and end tags
<element> </element>

– all attribute values must be enclosed in quotation mark and
assigned with the use of = operator

• Valid xml document
– well formed

– conforms to the predefined schema

T.Kubik: ISM

XML Validation

T.Kubik: ISM

XML Instance
Schema

processor

XML Schema

Post schema

validation

infoset

DTD - document type definition

• part of the XML language specification (XML 1.0
& 1.1 spec)

• defines the structure and the legal elements and
attributes of an XML document

• can be embedded inside an XML document or
can be referenced

• is used by applications to verify that XML data is
valid

T.Kubik: ISM

DTD primitive types

• CDATA
– a string type with no restrictions placed on it, it can contain any textual data as long as its suitably escaped

• ENTITY
– has to start with a letter or ':' or '_' and the rest of the characters must be numbers, letters ':', '_', '-', or '.' but no space
– the value of the ENTITY attribute also has to match an ENTITY that has been declared elsewhere within the DTD

• ENTITIES
– a list of values like in ENTITY separated by a single space
– each value within the entities attribute has to match an ENTITY that has been declared elsewhere within the DTD

• DTD ID
– must conform to the naming rules like ENTITY
– must be unique across all the ID values declared within the XML Document
– an element may only have a single ID value declared against it
– an attribute declared of type ID must be defined as either #IMPLIED or #REQUIRED

• IDREF
– must conform to the naming rules like ENTITY
– IDREF attribute has to match an ID value defined elsewhere within the XML Document.

• IDREFS
– a list of values that conform to the naming rules like ENTITY separated by a single space
– each value within the IDREFS attribute must match an ID value that has been defined elsewhere within the XML Document.

• NMTOKEN
– can contain numbers letters, and ':', '_', '-', or '.' it can not contain spaces or whitespace

• NMTOKENS
– it must contain one or more NMTOKEN values separated by a single space

• PCDATA (parse-able text data)
– an element can contain #PCDATA, but not attribute
– represents mixed content: elements may contain character data, optionally interspersed with child elements

T.Kubik: ISM

https://www.liquid-technologies.com/DTD/Datatypes/index.aspx

DTD Syntax Glossary

DTD Expression Description
CDATA Data Type : Character Data
ID Data Type : Unique Identifier

IDREF Data Type : Reference to a Unique Identifier

IDREFS Data Type : Reference to a 0-n Unique Identifiers

ENTITY Data Type : Reference to an ENTITY Declaration

ENTITIES Data Type : Reference to an 0-n ENTITY Declarations

NMTOKEN Data Type : Named Token
NMTOKENS Data Type : 0-n Named Tokens
? Element cardinality : Optional (0-1)

* Element cardinality : Zero to Many (0-n)

+ Element cardinality : One to Many (1-n)

, Sequence : separates items within a sequence

| Choice : separates items within a choice

--> Ends a comment
<!-- Starts a comment

ANY Declares an attribute on an Element

T.Kubik: ISM

https://www.liquid-technologies.com/DTD/Datatypes/index.aspx

DTD Syntax Glossary

DTD Expression Description

ATTLIST Declares an attribute on an Element

EMPTY Declares an attribute on an Element

DOCTYPE Starts a DTD declaration

ELEMENT Defines an XML Element

ENTITY Defines an ENTITY, which can be used as a replacement token

NOTATION

#PCDATA Allows mixed content to be defined

#REQUIRED Attribute property : Attribute is required

#FIXED Attribute property : Attribute must have a specific value

#IMPLIED Attribute property : Attribute is optional (0-1)

SYSTEM ENTITY property : The entity value is to be loaded from a uri

PUBLIC
ENTITY property : The entity value is referred to by a public identifier, or

can be loaded from a uri

T.Kubik: ISM

https://www.liquid-technologies.com/DTD/Datatypes/index.aspx

DTD based validation

XML file message.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Message SYSTEM "message.dtd">

<Message date="2019-04-16">

<Greeting>Hello!</Greeting>

</Message>

DTD file message.dtd

<?xml version="1.0" encoding="utf-8"?>

<!ELEMENT Message (Greeting)>

<!ELEMENT Greeting (#PCDATA)>

<!ATTLIST Message date CDATA #REQUIRED>

T.Kubik: ISM

XML Schema based validation

XML file message.xml

<?xml version="1.0" encoding="UTF-8"?>

<Message xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="MySchema.xsd" date="2019-04-16">

<Greeting>Hello!</Greeting>

</Message>

XML Schema file message.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

<xs:complexType name="MessageType">

<xs:sequence>

<xs:element name="Greeting" type="xs:string" />

</xs:sequence>

<xs:attribute name="Date" type="xs:date" />

</xs:complexType>

<xs:element name="Message" type="MessageType" />

</xs:schema>

T.Kubik: ISM

XML Schema based validation

XML Schema file student.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.org/MySchema"
xmlns:tns="http://www.example.org/MySchema" elementFormDefault="qualified">

<complexType name="StudentsType">

<sequence>

<element name="Student" type="tns:StudentType" maxOccurs="unbounded"
minOccurs="1"></element>

</sequence>

</complexType>

<complexType name="StudentType">

<sequence>

<element name="Name" type="string"></element>

<element name="Surname" type="string"></element>

</sequence>

</complexType>

<element name="Students" type="tns:StudentsType"></element>

</schema>

T.Kubik: ISM

XML Schema based validation

XML file student.xml

<?xml version="1.0" encoding="UTF-8"?>

<tns:Students xmlns:tns="http://www.example.org/MySchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.org/MySchema
student.xsd ">

<tns:Student>

<tns:Name>Adam</tns:Name>

<tns:Surname>Nowak</tns:Surname>

</tns:Student>

</tns:Students>

T.Kubik: ISM

Using JAXB – round trip

Nice example:

http://javajee.com/lab-jaxb-2-marshaling-and-unmarshaling-with-xsd-to-java-binding

T.Kubik: ISM

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLS

chema">

<xs:complexType name="KontaktType">

<xs:sequence>

<xs:element name="Imie"

type="xs:string"></xs:element>

<xs:element name="Email"

type="xs:string"></xs:element>

</xs:sequence>

</xs:complexType>

<xs:element name="Kontakt"

type="KontaktType"></xs:element>

</xs:schema>

Using JAXB

JAXBContext jc = JAXBContext.newInstance("generated");

Unmarshaller u = jc.createUnmarshaller();

FileInputStream f = new FileInputStream("mojeDane.xml");

JAXBElement<generated.KontaktType> k =

(JAXBElement<generated.KontaktType>) u.unmarshal(f);

System.out.println(k.getValue().getImie());

System.out.println(k.getEmail ().getEmail());

> xjc dane.xsd

<?xml version="1.0" encoding="UTF-8"?>
 <Kontakt>

 <Imie>Jan</Imie>

 <Email>jan@ex.com</Email>

 </Kontakt>

T.Kubik: ISM

Web services

• Creating bottom-up and top-down Web services
– https://www.eclipse.org/webtools/jst/components/ws/1.5/tutorials/Bott

omUpWebService/BottomUpWebService.html

• Eclipse Help
– https://help.eclipse.org/2019-03/index.jsp

• JAX-WS Tools User Guide
– https://help.eclipse.org/2019-03/index.jsp

– Testing and validating Web services
• https://help.eclipse.org/2019-

03/index.jsp?topic=%2Forg.eclipse.wst.wsi.ui.doc.user%2Ftasks%2Ftmonito
r.html

• Introduction to Apache CXF
– https://www.baeldung.com/introduction-to-apache-cxf

T.Kubik: ISM

