

How to build a SOAP service in Java by “code-first” approach and deploy it on

Apache Tomcat server with Apache CFX support from with eclipse IDE

Prerequisities

Java
This tutorial was prepared for jdk 11. You can download it from Oracle or you can use OpenJDK.

IDE
Thera are some options available on the market. This tutorial works for: Eclipse or Spring Tools 4 ready-to-use
distribution package. The scenario described can be repeated with the use of IntelliJ, however in a quite different
way.

Eclipse
Download Eclipse from https://www.eclipse.org/downloads/packages/ and unzip it in a working folder. In particular

you can download: Eclipse IDE 2021-03 R Packages / Eclipse IDE for Enterprise Java Developers from

https://www.eclipse.org/downloads/packages/release/2021-03/r/eclipse-ide-enterprise-java-and-web-developers

This package includes Eclipse Web Tools Platform 3.21 (WTP) – set of tools used to build web services.

WTP requires 64-bit Java 11 or a newer "LTS" release to be run properly (there are none so far). WTP 3.21 is the

current supported release (at this tutorial writing).

You can check, what is really installed selecting Help/About Eclipse IDE and then clicking on WTP icon in the popup

window.

Eclipse IDE 2021-03 R Packages / Eclipse IDE for Enterprise Java Developers lacks of Spring Tools 4 for Eclipse that

support development of application based of Spring/SpringBoot framework. They are not necessary to go on with

this tutorial. However you can install and update these tools from Eclipse Marketplace (search for Spring Tools 4).

https://www.eclipse.org/downloads/packages/
https://www.eclipse.org/downloads/packages/release/2021-03/r/eclipse-ide-enterprise-java-and-web-developers

Spring Tools 4 ready-to-use distribution package

Download Spring Tools 4 as ready-to-use distribution package from https://spring.io/tools (for Windows, the

download is a self-extracting JAR archive - double click and it will expand itself on disc).

This distribution package lacks of Web Tools Platform (WTP). Installation and updates of WTP can be performed

from Eclipse Marketplace (search for Web Developer Tools)

But please take care to install all the necessary parts. The installations details must much those listed in the About

Eclipse IDE Features window.

After installation you can adjust the set of installed artefacts selecting “Change”

https://spring.io/tools

Apache CXF
To get use of the latest improvements of Apache CXF framework you should download it from

https://cxf.apache.org/download.html web site.

Select binary distribution and unzip it in a working folder. In particular you can download apache-cxf-3.4.3.tar.gz (it

was the latest one):

 https://www.apache.org/dyn/closer.lua/cxf/3.4.3/apache-cxf-3.4.3.zip

Apache Tomcat
Download Apache Tomcat from http://tomcat.apache.org/ and unzip it in a working folder. In particular you can

download:

 9.0.35 https://tomcat.apache.org/download-90.cgi https://apache.mirrors.tworzy.net/tomcat/tomcat-

9/v9.0.35/bin/apache-tomcat-9.0.35-windows-x64.zip

Implementation

eclipse
Run eclipse with JDK 11. If you have various JDK present in your system please make sure, that you are using the

correct one.

Under windows you can prepare shortcut with the following parameters:

Target element: drive_letter:eclipse_installation_directory\eclipse.exe -vm
"drive_letter:java_installation_directory/bin/javaw.exe"

Start in: drive_letter:eclipse_installation_directory

The important setting is to pass –vm option to eclipse

with a full path to javaw.exe (otherwise eclipse will

use default path to java).

After launching eclipse you will be prompted for a

workspace:

Next, when the eclipse will be already running, you

have to configure java runtime in:

“Windows/Preferences”. Most probably you will see

something like this:

https://cxf.apache.org/download.html

However, you can always add a new runtime by pressing on Add... button and then following wizard steps:

Set up Apache CXF in “Window/Preferences”

Add Apache Tomcat server. This can be done through click on link under Server tab in the eclipse workspace (if there

are no servers yet) or at any time by a wizard “New/Other/Server”

Continue by setting up Apache Tomcat 9.0 (find it under Apache tree)

Project
Create new Dynamic Web Project. Name it, modify default configuration for Apache Tomcat (in order to make

Apache CXF dependency)

 Please note, that in the wizard window checked box has label CXF 2.x Web Service. But in reality the CXF 3.4.3 will

be used (acording to adjustment to eclipse configuration we have already done). You will notice this in the next third

window:

Configure workspace (if you wish to see the project structure):

Create new classes:

1. Define Info class in model package

package model;

public class Info {

 private String message;

 private String value;

 public String getMessage() {

 return message;

 }

 public void setMessage(String message)

{

 this.message = message;

 }

 public String getValue() {

 return value;

 }

 public void setValue(String value) {

 this.value = value;

 }

 }

2. Define InfoService class in service package

package service;

import java.util.ArrayList;

import java.util.List;

import model.Info;

public class InfoService {

 private List<Info> il = new

ArrayList<Info>();

 public List<Info> getAllInfo() {

 return il;

 }

 public void addInfo(Info info) {

 il.add(info);

 }

}

If needed, refresh project tree by pressing F5 (for some reasons sometimes packages are displayed not in correct

place, but after refreshing problem disappear).

Now you can create and deploy a new web service (depoyable on Tomcat v9.0, with Apache CXF support, SOAP 1.2,

wsdl without separate xsd). Please remember, that in “code first” approach the implementation of the class working

as a service must be finished (at least the signatures of the methods must be in a final form). Otherwise you will

need to regenerate service description every time the code of the class is changed. This may cause some troubles (!).

In order to generate and deploy a new service please select InfoService class (this makes things easier). After that

start a wizard: New/Other/Web Services/Web Service.

On the way please remember to set “Web service runtime” in configuration section to Apache CXF (by default it is

set to Apache Axis)

Wizard will ask for the methods in InfoService class which are going to be used as service’s methods. Select them

accordingly (wizard will insert proper annotations inside class’ source code).

Next you will be asked about details of WSDL generation and SOAP binding. After that you can start server.

Please observe what is written in Console. If everything is all right, tou will see “java2ws ...”.

After pressing Start the server will be started. This will open new sockets and thus the Firewall might pop up an alert

window.

If you continue you will see the window by which you can register the service in UDDI registry. But this registry is not

running thus leave the available options unchecked.

Look at “Apache CXF console”. If everything was all right you see the following output. This means that java2ws

worked correctly and all supporting classes were generated. These classes will be placed in service.javaws package,

the generated wsdl will be in /wsdl folder.

Additionally web.xml and cxf-beans.xml will be generated

(described hereafter).

Please note – the content of WebContent folder will be

deployed on Apache Tomcat (If you wish you can export

your project as a war file and deploy this war file by hand).

Please note as well that there is no class in the project

with main method. And this is correct. Indeed there is no

application to run as stand alone app. The service will be

deployed on Apache Tomcat container.

 Most probably you will see the error in “Tomcat v9.0

server at local host” console:

The reason is that the content of WebContent/WEB-INF/bean-cxf.xml (which was generated automatically) has been

designed for an older version of Apache CXF. In a newer versions of this library all the /META-INF/cxf/cxf-extension-

XYZ.xml files were removed (see: https://cxf.apache.org/docs/30-migration-guide.html). Therefore the /WEB-

INF/cxf-beans.xml file must be updated by removing one highlighted line:

Sometimes eclipse xsd validator shows errors in the web.xml line:

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0.xsd" version="4.0">

but indeed it is correct line.

You can play a little saving cxf-beans.xml and web.xml – at certain moment eclipse will accept that line.

In troubles you could try to change it into:

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd" version="3.1">

end revert changes.

Now restart your application and server:

https://cxf.apache.org/docs/30-migration-guide.html

If you see opened browser with 404 - dont worry. Actually this is not an error. Just the environment tries to show in

a browser home page of your Dynamic Web Application. But this is a service, not a web app. You should access its

functions from the endpoints.

Information about all exposed endpoints can be found under: http://localhost:8080/TestingSOAP/services/

If you move a mouse over WSDL link, you will see, in the footnote, the address where wsdl file is served:

http://localhost:8080/TestingSOAP/services/InfoServicePort?wsdl

All the paths of the service are configured in the deployment descriptor /WEB-INF/web.xml and in the file /WEB-

INF/cxf-beans.xml

SoupUI
If you want to test your service you can run some tools offered by eclipse (like Web Service Explorer) or you can

build client application by yourself. Bu there is another option. You can run SoapUI tool.

 Open Source Version 5.5.0 can be downloaded from https://www.soapui.org/

https://www.soapui.org/downloads/latest-release/

Good option is to download zip version (it can run from a local folder).

Now you can create SoupUI project and sent the requests from it to the service

https://www.soapui.org/

Remarks
Sometimes the eclipse wizards are not working. The source of troubles can be java2wsdl run by Apache CXF.

Sometimes Apache Tomcat can not start, most often because of wrong configuration. For example – your eclipse

may run different jre than declared runtime in your project (this happens often if in one system there are several jdk

installed). Or your project has not correct path for Apache CXF library (by the way – eclipse for Java EE has all plugins

needed to build Dynamic Web Projects, if you run STS based on eclipse – some plugins may not be installed). Thus

please check all the requirements and dependencies.

Sometimes Apache Tomcat cannot start. The reasons might be: system firewall (especially on Windows 10), occupied

port (by some other services) etc. Try to trace the problems according to these hints.

