
Information systems modeling

Tomasz Kubik

Aspect-oriented programming, AOP

Systems are composed of several components, each
responsible for a specific piece of functionality. But often these
components also carry additional responsibilities beyond their
core functionality.

System services such as logging, transaction management,
and security often find their way into components whose core
responsibilities is something else. These system services are
commonly referred to as cross-cutting concerns because
they tend to cut across multiple components in a system.

AOP is a technique that promotes separation of concerns in a
software system.

[based on Spring in Action]

T.Kubik: ISM

Working with AOP

T.Kubik: ISM

Standard way:
public void someMethod() {

System.out.println("Entering method");

// do something

System.out.println("Leaving method");

}

It would be nice to have a simple method without surrounding printlns:
public void someMethod() {

// do something

}

and a method that will run everytime someMethod() is executed:

public void aroundSomeMethod(final ProceedingJoinPoint thisJoinPoint)

throws Throwable {

System.out.println("Entering method");

thisJoinPoint.proceed();

System.out.println("Leaving method");

}

Working with AOP

T.Kubik: ISM

http://www.christianschenk.org/blog/aop-with-aspectj/

AOP in brief

• It can help to modularize application for functionality that spans
across multiple boundaries

• It encapsulates features and follows Single Responsiblity by moving
cross-cutting concerns (logging, error handling, etc.) out of the main
components

• When used appropriately AOP can lead to higher levels of
maintainability and extensibility of software over time

• There are usually two ways of accomplishing AOP:
– injecting code automagically by a preprocessor before/after a method,

– attaching proxy classes that intercept a method call and can then
execute things before/after a method call.

• In practice didn’t become as useful as originally expected. It works
well for injecting code modifications, like monitoring, debugging, and
logging logic. However, other mechanisms were found to be “good
enough” for addressing cross-cutting concerns.

T.Kubik: ISM

https://stackoverflow.com/questions/242177/what-is-aspect-oriented-programming

https://deanwampler.github.io/aspectprogramming/

AOP vocabulary

T.Kubik: ISM

• Aspect:
– a modularization of a concern that cuts across multiple classes

– there can be one or more aspects in an application

– in Spring AOP aspects are implemented using regular classes (the schema-based
approach) or regular classes annotated with the @Aspect annotation (the
@AspectJ style).

• Join point:
– a point where an aspect can be plugged in (i.e. a constructor's invocation, a

method's execution or an exception management)

– in Spring AOP a join point always represents a method execution

• Advice:
– the action to be performed in the joinpoint

– the types of advice include "around," "before" and "after" advice

– many AOP frameworks, including Spring, model an advice as an interceptor,
maintaining a chain of interceptors around the join point.

• Pointcut:
– contains an expression to locate the joinpoint to which the advice will be applied

– matching join points by pointcut expressions is a central concept to AOP,

– Spring uses the AspectJ pointcut expression language by default.

AOP vocabulary

• Introduction
– used to declare additional methods and attributes for a particular type

– Spring AOP allows introducing new interfaces (and a corresponding implementation)
to any advised object.

– known as inter-type declaration in the AspectJ community.

• Target object:
– object being advised by one or more aspects (advised object).

– Spring AOP is implemented using runtime proxies therefore this object will always be
a proxied object.

• AOP proxy:
– an object created by the AOP framework in order to implement the aspect contracts

(advise method executions and so on).

– In the Spring Framework, an AOP proxy will be a JDK dynamic proxy or a CGLIB
proxy.

• Weaving:
– linking aspects with other application types or objects to create an advised object

– can be done at compile time (using the AspectJ compiler, for example), load time, or at
runtime.

– Spring AOP, like other pure Java AOP frameworks, performs weaving at runtime.

T.Kubik: ISM

Types of advices

• before
– Run advice before the a method execution.

• after
– Run advice after the method execution, regardless of its

outcome.

• after-returning
– Run advice after the a method execution only if method

completes successfully.

• after-throwing
– Run advice after the a method execution only if method exits by

throwing an exception.

• around
– Run advice before and after the advised method is invoked.

T.Kubik: ISM

AspectJ – project in STS

T.Kubik: ISM

AspecJ – example (aspect,

pointcut, advice)

T.Kubik: ISM

AspectJ – example (advised class)

T.Kubik: ISM

AspectJ – example (running app)

T.Kubik: ISM

Declaring Aspect by annotation

(@AspectJ)

T.Kubik: ISM

package org.xyz;

import org.aspectj.lang.annotation.Aspect;

@Aspect

public class AspectModule {

...

}

https://www.tutorialspoint.com/spring/aspectj_based_aop_appoach.htm

Declaring pointcut by annotation

(somwhere inside Aspect)

T.Kubik: ISM

import org.aspectj.lang.annotation.Pointcut;

@Pointcut("execution(*

com.xyz.myapp.service.*.*(..))") // expression

private void businessService() {} // signature

This pointcut was named 'businessService' and will match the execution of

every method available in the classes under the package
com.xyz.myapp.service

https://www.tutorialspoint.com/spring/aspectj_based_aop_appoach.htm

Declaring advices (inside Aspect)

T.Kubik: ISM

@Before("businessService()")

public void doBeforeTask(){

...

}

@After("businessService()")

public void doAfterTask(){

...

}

@AfterReturning(pointcut = "businessService()", returning = "retVal")

public void doAfterReturnningTask(Object retVal) {

// you can intercept retVal here.

...

}

@AfterThrowing(pointcut = "businessService()", throwing = "ex")

public void doAfterThrowingTask(Exception ex) {

// you can intercept thrown exception here.

...

}

@Around("businessService()")

public void doAroundTask(){

...

}

Assuming that a pointcut signature method

businessService() have been already

defined

https://www.tutorialspoint.com/spring/aspectj_based_aop_appoach.htm

Declaring inline pointcuts

T.Kubik: ISM

@Before("execution(* com.xyz.myapp.service.*.*(..))")

public doBeforeTask(){

...

}

An inline pointcut can be defined for any of the advices.

https://www.tutorialspoint.com/spring/aspectj_based_aop_appoach.htm

Pointcut definition

T.Kubik: ISM

https://blog.espenberntsen.net/2010/03/20/aspectj-cheat-sheet/

Pointcut designators

• A method pointcut:
@Pointcut("[method designator](* aspects.trace.demo.*.*(..))")

public void traceMethodsInDemoPackage() {}

– call – The pointcut will find all methods that calls a method in the demo package.

– execution – The pointcut will find all methods in the demo package.

– withincode – All the statements inside the methods in the demo package.

• A type pointcut:
@Pointcut("[type designator](*..*Test)")

public void inTestClass() {}

– within – all statements inside the a class that ends with Test.

• A field pointcut:
@Pointcut("[field designator](private

org.springframework.jdbc.core.JdbcTemplate " +

"integration.db.*.jdbcTemplate)")

public void jdbcTemplateGetField() {}

– get – all reads to jdbcTemplate fields of type JdbcTemplate in the integration.db package. Includes
all methods on this field if it’s an object.

– set – when you set the jdbcTemplate field of type JdbcTemplate in the integration.db package to a
new value.

T.Kubik: ISM

Spring AOP supported Pointcut

Designators
• execution - for matching method execution join points, this is the primary pointcut

designator you will use when working with Spring AOP

• within - limits matching to join points within certain types (simply the execution of a method

declared within a matching type when using Spring AOP)

• this - limits matching to join points (the execution of methods when using Spring AOP)

where the bean reference (Spring AOP proxy) is an instance of the given type

• target - limits matching to join points (the execution of methods when using Spring AOP)

where the target object (application object being proxied) is an instance of the given type

• args - limits matching to join points (the execution of methods when using Spring AOP)

where the arguments are instances of the given types

• @target - limits matching to join points (the execution of methods when using Spring AOP)

where the class of the executing object has an annotation of the given type

• @args - limits matching to join points (the execution of methods when using Spring AOP)

where the runtime type of the actual arguments passed have annotations of the given

type(s)

• @within - limits matching to join points within types that have the given annotation (the

execution of methods declared in types with the given annotation when using Spring AOP)

• @annotation - limits matching to join points where the subject of the join point (method

being executed in Spring AOP) has the given annotation

T.Kubik: ISM

https://docs.spring.io/spring/docs/4.3.14.RELEASE/spring-framework-reference/html/aop.html

Spring AOP vs AspectJ

Joinpoint Spring AOP Supported AspectJ Supported

Method Call No Yes

Method Execution Yes Yes

Constructor Call No Yes

Constructor Execution No Yes

Static initializer execution No Yes

Object initialization No Yes

Field reference No Yes

Field assignment No Yes

Handler execution No Yes

Advice execution No Yes

T.Kubik: ISM

http://www.baeldung.com/spring-aop-vs-aspectj

summary of supported joinpoints:

It’s also worth noting that in Spring AOP, aspects aren’t applied to the

method called within the same class.

Spring AOP vs AspectJ (summary)

T.Kubik: ISM

http://www.baeldung.com/spring-aop-vs-aspectj

Spring AOP AspectJ

Implemented in pure Java
Implemented using extensions of Java

programming language

No need for separate compilation

process
Needs AspectJ compiler (ajc) unless LTW is set up

Only runtime weaving is available

Runtime weaving is not available. Supports

compile-time, post-compile, and load-time

Weaving

Less Powerful – only supports method

level weaving

More Powerful – can weave fields, methods,

constructors, static initializers, final class/methods,

etc…

Can only be implemented on beans

managed by Spring container
Can be implemented on all domain objects

Supports only method execution

pointcuts
Support all pointcuts

Proxies are created of targeted objects,

and aspects are applied on these proxies

Aspects are weaved directly into code before

application is executed (before runtime)

Much slower than AspectJ Better Performance

Easy to learn and apply Comparatively more complicated than Spring AOP

Remarks

• The full AspectJ pointcut language supports additional pointcut
designators that are not supported in Spring. These are:
– call, get, set, preinitialization,

staticinitialization, initialization, handler,
adviceexecution, withincode, cflow, cflowbelow, if,
@this, @withincode

• Because Spring AOP limits matching to only method execution
join points, the discussion of the pointcut designators above gives
a narrower definition than you will find in the AspectJ programming
guide.

• In addition, AspectJ itself has type-based semantics and at an
execution join point both this and target refer to the same object
- the object executing the method. Spring AOP is a proxy-based
system and differentiates between the proxy object itself (bound to
this) and the target object behind the proxy (bound to target).

T.Kubik: ISM

https://docs.spring.io/spring/docs/4.3.14.RELEASE/spring-framework-reference/html/aop.html

Understanding AOP proxies

T.Kubik: ISM

public class Main {

public static void main(String[] args) {

Pojo pojo = new SimplePojo();

// this is a direct method call on the 'pojo' reference

pojo.foo();

}

}

public class SimplePojo implements Pojo {

public void foo() {

// this next method invocation is a direct call on the 'this' reference

this.bar();

}

public void bar() {

// some logic...

}

}

https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch07s06.html

Understanding AOP proxies

T.Kubik: ISM

public class Main {

public static void main(String[] args) {

ProxyFactory factory = new ProxyFactory(new SimplePojo());

factory.addInterface(Pojo.class);

factory.addAdvice(new RetryAdvice());

Pojo pojo = (Pojo) factory.getProxy();

// this is a method call on the proxy!

pojo.foo();

}

}

https://docs.spring.io/spring/docs/3.0.0.M4/reference/html/ch07s06.html

Aspect vs AspectJ

T.Kubik: ISM

AJDT support in eclipse

T.Kubik: ISM

Resources

• AspectJ Development Tools plugin to eclipse
https://download.eclipse.org/tools/ajdt/aspectj/update/?d

https://download.eclipse.org/tools/ajdt/48/dev/update/

https://www.eclipse.org/aspectj/doc/next/progguide/starting-production.html

• Tutorials
https://dzone.com/articles/implementing-aop-with-spring-boot-and-aspectj

https://www.tutorialspoint.com/spring/aop_with_spring.htm

http://www.springboottutorial.com/spring-boot-and-aop-with-spring-boot-starter-aop

https://marcin-chwedczuk.github.io/overview-of-spring-annotation-driven-aop

http://data.christianschenk.org/logging-with-aspectj/xref/index.html

http://www.baeldung.com/aspectj

• Explanation of pointcuts and aspects syntax
https://docs.spring.io/spring/docs/5.0.x/spring-framework-
reference/core.html#aop

• Explanation of weaving
https://www.credera.com/blog/technology-insights/open-source-technology-
insights/aspect-oriented-programming-in-spring-boot-part-3-setting-up-
aspectj-load-time-weaving/

• Example of AspectJ+Spring Boot with weaving
https://github.com/dsyer/spring-boot-aspectj

• Differences AOP vs AspectJ
http://www.baeldung.com/spring-aop-vs-aspectj

http://perfspy.blogspot.com/2013/09/differences-between-aspectj-call-and.html

• Dependency injection
https://docs.jboss.org/weld/reference/latest/en-US/html/injection.html

http://buraktas.com/java-cdi-dependency-injection-example/

T.Kubik: ISM

