
Consider a very simple personsExample-01 ontology:

Listing 1: Content of personsExample-01.ttl

@prefix ex: <http://example.org#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ex:Man rdfs:subClassOf ex:Person .

ex:Woman rdfs:subClassOf ex:Person .

ex:hasWife rdfs:domain ex:Man ;

 rdfs:range ex:Woman .

ex:john ex:hasWife ex:mary .

It consist of 5 triples. This can be confirmed after uploading it to the RDF4J in memory store without

any reasoning turned on (see Figure 1a). The corresponding explicit graph can be visualized in a

simple chart (see Figure 1b).

a)

b)

 Figure 1: personsExample-01 ontology: a) summary after uploading to RDF4j triple store,
b) explicit graph visualization

However, if the RDFS reasoning is turn on, the number of triples increases. The resulting ontology

gets additional, inferred triples. The total number of triples in the considered case will be 170. The

triples directly related to the elements of the explicit graph (i.e. to the elements from ex: namespace)

are presented In Listing 2. Other triples (having roots in RDF and RDFS model) are omitted.

Listing 2: Content of personsExample-02.ttl with inferred triples (the originally declared triples are
highlighted in blue, the triples without any direct relation to the explicit graph are omitted).

@prefix ex: <http://example.org#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ex:Man rdf:type rdfs:Resource, rdfs:Class ;

 rdfs:subClassOf rdfs:Resource, ex:Man, ex:Person, ex:Person .

ex:Woman rdf:type rdfs:Resource, rdfs:Class ;

 rdfs:subClassOf rdfs:Resource, ex:Woman, ex:Person, ex:Person .

ex:hasWife rdf:type rdfs:Resource, rdf:Property , rdf:Property ;

 rdfs:subPropertyOf ex:hasWife ;

 rdfs:domain ex:Man ;

 rdfs:range ex:Woman .

ex:Person rdf:type rdfs:Resource, rdfs:Class ;

 rdfs:subClassOf rdfs:Resource, ex:Person .

ex:john rdf:type rdfs:Resource, ex:Man, ex:Person ;

 ex:hasWife ex:Mary .

ex:mary rdf:type rdfs:Resource, ex:Woman, ex:Person .

The corresponding implicit graph (with omitted triples) can be drawn as follows:

Figure 2: Explicit graph with triples collected in personsExample-02.ttl

Please note, that within inferred triples some duplicates might occur. In theory RDF graph is a set of

triples, which means that each triple can occur just once. However, the implementation of triple

store (and inference algorithms) sometimes causes creation of such duplicates (as in RDF4J

implementation).

To make things more clear ontology designers usually declare classes and properties implicitly as in

listing 3.

Listing 3: Content of personsExample-03.ttl

@prefix ex: <http://example.org#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ex:Person rdf:type rdfs:Class .

ex:Man rdfs:subClassOf ex:Person .

ex:Woman rdfs:subClassOf ex:Person .

ex:hasWife rdfs:type rdf:Property ;

 rdfs:domain ex:Man ;

 rdfs:range ex:Woman .

ex:john rdf:type ex:Man ;

 ex:hasWife ex:mary .

ex:mary rdf:type ex:Woman .

Thus the implicit graph includes declaration of classes and properties as in Figure 3. By convention

partial url of resources acting as classes are declares using uppercase, and properties – with

lowercase letters at the beginning. Partial urls of instances usually start with lowercase letter.

Figure 3: Explicit graph with triples collected in personsExample-03.ttl

To check how inferencing works you can try to upload to the triple store the ontology presented in

Listing 3. In this example the use of @base and custom @prefix (according to TURTLE syntax) is

demonstrated.

The interesting question is whether the graph is consistent. As we can see, :susan has been

declared as having :fatherOf property. RDF does not deliver any notion which would be used to

distinct :Man and :Women classes. Thus the inference engine will accept such declaration without

any warning.

 Listing 3: Content of personsExample-03.ttl

@base <http://example.org/> .

@prefix : <http://example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

<Man> rdfs:subClassOf :Person .

:Woman rdfs:subClassOf :Person .

:fatherOf rdfs:domain :Man .

:john a <Man> ;

 :fatherOf :adam .

:robert

 :fatherOf :susan .

:susan

 :fatherOf :john .

:susan a :Woman .

