

Cadinality test – example

Ontology
Let the ontology will be defined as below:

@prefix : <http://www.example.org/tkubik/ct#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<http://www.example.org/tkubik/ct#> a owl:Ontology .

:hasBrother a owl:SymmetricProperty .

:Any a owl:Class ;

 owl:equivalentClass [

 a owl:Restriction ;

 owl:onProperty :hasBrother ;

 owl:someValuesFrom owl:Thing .

] .

:Average a owl:Class ;

 owl:equivalentClass [

 a owl:Class ;

 owl:intersectionOf (

 [a owl:Restriction ;

 owl:onProperty :hasBrother ;

 owl:minCardinality "3"^^xsd:nonNegativeInteger .]

 [a owl:Restriction ;

 owl:onProperty :hasBrother ;

 owl:maxCardinality "4"^^xsd:nonNegativeInteger .]

) ;

] .

:Few a owl:Class ;

 owl:equivalentClass [

 a owl:Class ;

 owl:intersectionOf (

 [a owl:Restriction ;

 owl:onProperty :hasBrother ;

 owl:minCardinality "1"^^xsd:nonNegativeInteger .]

 [a owl:Restriction ;

 owl:onProperty :hasBrother ;

 owl:maxCardinality "2"^^xsd:nonNegativeInteger .]

) ;

] .

:Many a owl:Class ;

 owl:equivalentClass [

 a owl:Class ;

 owl:intersectionOf (

 [a owl:Restriction ;

 owl:onProperty :hasBrother ;

 owl:minCardinality "5"^^xsd:nonNegativeInteger .]

) ;

] .

:Person a owl:Class .

:i1 a owl:NamedIndividual , :Person ;

 :hasBrother :i2 , :i3 .

:i2 a owl:NamedIndividual , :Person .

:i3 a owl:NamedIndividual , :Person .

:i4 a owl:NamedIndividual , :Person ;

 :hasBrother :i5 , :i6 , :i7, :i8, :i9 .

:i5 a owl:NamedIndividual , :Person .

:i6 a owl:NamedIndividual , :Person .

:i7 a owl:NamedIndividual , :Person .

:i8 a owl:NamedIndividual , :Person ;

 :hasBrother :i5 , :i6 , :i7 .

:i9 a owl:NamedIndividual , :Person .

Consider definitions of Average, Few and Many classes. They are defined with the use of

owl:equivalentClass that allows put some restrictions on the class membership.

Such ontology, when processed with semantical reasoning turned, will be extended by inferred facts as follows.

1. i1 is an instance of Any and has two brothers declared explicitly (these are i2 and i3).

2. i2 is an instance of Any class and hasBrother i1 , but not i3 . It comes from the declaration of

hasBrother as a Symmetric property but not Transitive. In fact this property cannot be declared as Transitive

due to restrictions declared on classes Average, Few and Many. This is covered by the OWL 2 Web Ontology

Language, Structural Specification and Functional-Style Syntax (Second Edition) (https://www.w3.org/TR/owl2-

syntax/#Global_Restrictions%20_on_Axioms_in_OWL_2_DL) which requires that only simple

object properties may be asserted to be reflexive or symmetric. Asserting that a property is transitive

automatically makes it composite. Then the reasoner would rise an exception:
Non-simple property '<http://www.example.org/tkubik/ct#hasBrother>' or its inverse appears in the cardinality

restriction 'ObjectMaxCardinality(4 <http://www.example.org/tkubik/ct#hasBrother> owl:Thing)'.

https://www.w3.org/TR/owl2-syntax/#Global_Restrictions%20_on_Axioms_in_OWL_2_DL
https://www.w3.org/TR/owl2-syntax/#Global_Restrictions%20_on_Axioms_in_OWL_2_DL

3. i4 is an instance of Any class and has five brothers declared explicitly.

4. Because i1 has two brothers and i4 has five brothers one may think that both should belong to, respectively,

Few and Many classes. But this is not the case. With the use of owl:minCardinality restriction one can set

sufficient conditions for an instance to be a member of particular class (e.g. if the knowledge base includes

information that someone has 2 brothers, this person can be assigned to Few class). But

owl:maxCardinality restrictions are used to declare necessary conditions. Because of open world

assumption it is difficult to say that someone has no more brothers that already recorded in the knowledge base

(e.g. if the knowledge base includes information that someone has 3 brothers there is no guarantee that this

person has no more brothers, but for sure this person cannot be assign to Few class because the max cardinality

restriction would be broken). Combining necessary and sufficient conditions (by intersection operator) makes

the resulting formula a necessary condition.

Fortunatelly there is a way of closing the world. The instances can be assign to the proper class by running

SPARQL querry as in the example below (which result with a list list entities bolonging to Few class).

PREFIX cnt: <http://www.example.org/tkubik/ct#>

CONSTRUCT {?s a cnt:Few}

WHERE

{SELECT ?s (count(?p) AS ?numBrothers)

 WHERE

 { ?s cnt:hasBrother ?p

 } GROUP BY ?s

 HAVING (?numBrothers>0 && ?numBrothers<=2)

}

