
Information systems modeling

Tomasz Kubik

T.Kubik: ISM

Information system

• A set of interrelated elements, the function of which is the
processing of data using computer technology.

• Is composed of:

• and:

– organizational elements (procedures)

– information elements (knowledge base)

– equipment (equipment for communication, devices for processing

data that are not computers)

http://hajeralbuloshi.blogspot.com/

Information system - design

• Core factors

T.Kubik: ISM

Processes

Project

Product

participate in

is outcome of

allow automation of

Tools

People

runs on templates ofPeople: Architects, developers,

testers, users, customers etc

Project: The organizational

element through which

software development is

managed

Product: Artifacts that are created during the life of the project such as models,

source code, executables and documentation

Process: A software engineering process is a definition of the complete set of

activities needed to transform users’ requirements into a product

Tools: Software that is used to automate the activities defined in the process.

Project phases

Assumpions

Feasibility study

Project structure

Significant terms and conditions of the tender (SIWZ)

Client management

Provider management

Steering comittee

Provider project manager

Project auditor

List of project members
with details on rights, responsibilities etc.

Goal definition

Requirements engineering

Planning

Monitoring and control

Project implemenation

Project management

Project initialization

Project

T.Kubik: ISM

T.Kubik: ISM

Feasibility study

• Decides whether or not implement a system

• Answers the questions:
– Will the system contribute to the organizational objectives while

maintaining all the technical, economic and legal constrains?

– What problems currently exist and whether the system will help
solve them?

– Which of the problems are critical and which are not?

– Can the system be created using available technologies within
budget and time constraints?

– Can the system be integrated with existing systems, and if so,
what will be the integration problems?

– What happens if the system does not rise?

T.Kubik: ISM

Information system of the project

• Is related to:

– communication infrastructure

– information acquisition

• documentation, messages, notes

• reports on project state

• reports on projects efficiency

• reports on exceptional cases

– distributing information

– authoring and archiving

T.Kubik: ISM

Software tools supporting information

system

• Document management systems (DMS)

• Version control systems (CVS, SVN, GIT)

• Continous integration tools (Gitlab CI)

• IDE and various editors (mind maps, UML
diagrams, mockups)

• Groupware tools (SOGo)

• Project management (ticketing systems like
Track, Mantis, wiki)

• others ...

Software development process

T.Kubik: ISM

Jacobson I., Booch G, Rumbaugh J. The unified software development process

Inception Elaboration Construction Transition

P
ro

c
e
s
s
 W

o
rk

fl
o
w

s
S

u
p
p

o
rt

in
g

 W
o
rk

fl
o
w

s

preliminary 1
. . . .

n-1 n

Business
Modeling

Requirements

Analysis
and Design

Implementation

Test

Deployment

Configuration and
Change management

Project
Management

Environment

Iterations

Software Development Life Cycle

T.Kubik: ISM

https://pl.pinterest.com/nahumespinosa/software-develoment/

http://www.netcentix.com/Web/Web-App-Development.aspx
http://victorylogic.com/

https://pl.pinterest.com/katybyrne/project-management/
http://www.seguetech.com/waterfall-vs-agile-which-is-the-right-development-

methodology-for-your-project/

T.Kubik: ISM

Planning
4/7 11/7 18/7 25/7 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T1

T2

M1

T7
T3

M5

T8

M3

M2

T6

T5

M4

T9

M7

T10

M6

T11
M8

T12

Start

Finish

4/7 11/7 18/7 25/ 1/8 8/8 15/8 22/8 29/8 5/9 12/9 19/9

T4

T8 T11

T12

T1

T3

T9

T2

T6 T10

T7

T5

Fred

Jane

Anne

Mary

Jim

T.Kubik: ISM

Documents template (IEEE)

Table of Contents

1. Introduction
1.1. Purpose.

1.2 Scope

1.3 Definitions, acronyms, and abbreviations

1.4 References

1.5 Overview

2. Overall description
2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific requirements

Appendixes

Index

http://www.cse.msu.edu/~cse870/IEEEXplore-SRS-template.pdf

T.Kubik: ISM

Documents template (IEEE)

System Requirements Specification (SyRS)
1. Introduction

1.1 System purpose

1.2 System scope

1.3 System overview

1.3.1 System context

1.3.2 System functions

1.3.3 User characteristics

1.4 Definitions

2. References

3. System requirements
3.1 Functional requirements

3.2 Usability requirements

3.3 Performance requirements

3.4 System interface

3.5 System operations

3.6 System modes and states

3.7 Physical characteristics

3.8 Environmental conditions

3.9 System security

3.10 Information management

3.11 Policies and regulations

3.12 System life cycle sustainment

3.13Packaging, handling, shipping and transportation

4. Verification
(parallel to subsections in Section 3)

5. Appendices
Assumptions and dependencies

Acronyms and abbreviations
Systems and software engineering — Life cycle processes —

Requirements engineering (ISO/IEC/IEEE 29148:2011(E))

T.Kubik: ISM

Documents template (IEEE)

Stakeholder Requirements Specification (StRS)
1. Introduction

1.1 Business purpose

1.2 Business scope

1.3 Business overview

1.4 Definitions

1.5 Stakeholders

2. References

3. Business management requirements
3.1 Business environment

3.2 Goal and objective

3.3 Business model

3.4 Information environment

4. Business operational requirements
4.1 Business processes

4.2 Business operational policies and rules

4.3 Business operational constraints

4.4 Business operational modes

4.5 Business operational quality

4.6 Business structure

5. User requirements

6. Concept of proposed system
6.1 Operational concept

6.2 Operational scenario

7 Project Constraints

8. Appendix
8.1 Acronyms and abbreviations

Systems and software engineering — Life cycle processes —

Requirements engineering (ISO/IEC/IEEE 29148:2011(E))

T.Kubik: ISM

Documents template (IEEE)

Software Requirements Specification (SRS)
1. Introduction

1.1 Purpose

1.2 Scope

1.3 Product overview
1.3.1 Product perspective

1.3.2 Product functions

1.3.3 User characteristics

1.3.4 Limitations

1.4 Definitions

2. References

3. Specific requirements
3.1 External interfaces

3.2 Functions

3.3 Usability Requirements

3.4 Performance requirements

3.5 Logical database requirements

3.6 Design constraints

3.7 Software system attributes

3.8 Supporting information

4. Verification

(parallel to subsections in Section 3)

5. Appendices
5.1 Assumptions and dependencies
5.2 Acronyms and abbreviations

Systems and software engineering — Life cycle processes —

Requirements engineering (ISO/IEC/IEEE 29148:2011(E))

RM-ODP

T.Kubik: ISM

ISO/IEC 10746-1:1998, Basic Reference Model of Open Distributed Processing (ODP)

T.Kubik: ISM

Requirements engineering

• Requirements

– statements of what the system must do, how it must behave, the

properties it must exhibit, the qualities it must possess, and the

constraints that the system and its development must satisfy.

• Requirement according to The Institute of Electrical and

Electronics Engineers (IEEE)

– a condition or capability needed by a user to solve a problem or

achieve an objective

– a condition or capability that must be met or possessed by a system

or system component to satisfy a contract, standard, specification, or

other formally imposed document

– a documented representation of a condition or capability as in

definition 1 or 2

http://www.sei.cmu.edu/productlines/frame_report/req_eng.htm

T.Kubik: ISM

Requirements definitions

• They can take different forms, depending on the
objectives:
– Open form at the contracting stage

– Closed at the implementation stage

• Desirable characteristics of the definitions:
– Consistency (without contradiction in the defined expectations)

– Completeness (including all required expectations)

– Accuracy (narrowing the scope for interpretation)

– Reality (i.e. realizable)

– Verifiability (verifiable)

– Significance (best meet the needs of the user)

T.Kubik: ISM

Milestones in the proces of

requirements definitions

Feasibility

analysis

Requirements

Analysis

Creation of

a prototype
Project study

Requirements

specification

Feasibility

Report

User

requirements

Evaluatio

report

Architecture

design

System

requiremets

Actions

Stages

T.Kubik: ISM

Requirements

• User requirements
– Define, in a general way, expectations for the services offered by

the system and the constraints under which the system will
operate

– collection of functional and nonfunctional requirements

– expressed in natural language, using the forms, tables and
diagrams readable for users without technical background

– formed on the basis of an interview with the client

• System requirements
– Detailed descriptions of services and system constraints

– They can be represented by models

– They appear as part of the contract between the customer and the
supplier

• Specification of software project
– an abstract description of a software project, a core for detailed

project description and implementation, created for developers

T.Kubik: ISM

T.Kubik: ISM

Requirements

• Functional requirements
– planned services offered by the system

– reaction to the particular inputs

– behaviors in certain situations

– protected behaviors and limits

• Non-functional requirements
– limitations of the services and features, eg. timing

constraints, constraints on the development process,
standards, etc.

• Domain requirements
– they come from the field of application

– they can be functional or non-functional

UI prototyping

• Mockups, Wireframes

T.Kubik: ISM

Pencil

T.Kubik: ISM

http://pencil.evolus.vn/

Various perspectives on modeling

Modeling the structure

and dynamics of the system

Implementation of the structure

and dynamics of the system, code generation

Perspective of the concept

what to do?

Perspective of specifications

how should I use?

Perspective of implementation

how to perform?

 Model of the real system

(business modeling)

 Requirements

Analysis (conceptual

model)

 Conceptual model tests

 Design model (hardware

and architecture software;

user access; storage)

 Deployment model

 Design model tests

 Deployment tests

 Programming

(specification of the

program: declarations,

definitions; additional data

structures: structure of

containers, files,

databases)

 Software tests

 Implementation

T.Kubik: ISM

T.Kubik: ISM

Model-driven architecture (MDA)

• an approach to using models in software
development whereby models are used as the
primary source for documenting, analyzing,
designing, constructing, deploying and
maintaining a system

• prescribes certain kinds of models to be used,
how those models may be prepared and the
relationships of the different kinds of models

• separates the operation of a system from the
details of the way that system uses the
capabilities of its platform

• basic concepts:
– system notions
– model, viewpoint, platform
– platform independence,
– pervasive services
– application, implementation,
– model transformation

Model Driven Architecture

• Architecture

– The architecture of a system is

a specification of the parts and

connectors of the system and

the rules for the interactions of

the parts using the connectors.

– Within the context of MDA these

parts, connectors and rules are

expressed via a set of

interrelated models.

T.Kubik: ISM

Frank Truye: The Fast Guide to Model Driven Architecture, The Basics

of Model Driven Architecture (MDA). Cephas Consulting Corp, 2006

T.Kubik: ISM

Various modeling paradigms and

languages

• UML

• Entity relationship diagrams

• XML Schema

• Ontology

produkt

 opis

 cena zakupu

 cena sprzedaży

 stan magazynu

kodPaskowy

 kodPaskowy

infoZamówienia

 data zamówienia

 data wysyłki

 koszt wysyłki

liniaZamówienie

 produkt zamówiony

 ilość

klient

 tytuł

 nazwisko

 imię

 adresUDM

 miasto

 kod

 telefon

KodPocztowy

Poczta

Miejscowosc

Ulica

Budynek

ULIC

Wojewodztwo

Powiat

Gmina

Uwagi

Lokal

SkrytkaPocztowa

Kraj

TERC

SIMC

AdresGrupaAdres

T.Kubik: ISM

Programming level

• Databases
SELECT ST_Intersects('POINT(0 0)'::geometry, 'LINESTRING (2 0, 0
2)'::geometry)

• Data exchange
<gml:Point gml:id="p21"

srsName="http://www.opengis.net/def/crs/EPSG/0/4326">

<gml:coordinates>45.67, 88.56</gml:coordinates>

</gml:Point>

• Data processing using API
Geometry g = ...

BufferOp bufOp = new BufferOp(g);

bufOp.setEndCapStyle(BufferOp.CAP_BUTT);

Geometry buffer = bufOp.getResultGeometry(distance);

• Working with ontologies
PREFIX spatial: <http://jena.apache.org/spatial#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?placeName

{

?place spatial:nearby (51.46 2.6 10 'km') .

?place rdfs:label ?placeName

}

T.Kubik: ISM

Object-Oriented Modeling

• Object orientation
– an object represents an entity in the real world

– state on an object can change (due to internal action or external
interaction)

– an object exposes its behaviors through interfaces (can only
interact at interfaces – encapsulation).

– abstraction: classification, generalization, association, and
aggregation

• Structural orientation
– no artificial decomposition into simpler parts due to technical

restrictions should be necessary

• Operational orientation
– operations on complex objects are possible without having to

decompose the objects into a number of simple objects

• Behavioral orientation
– a system must allow its objects to be accessed and modified

only through a set of operations specific to an object type

S.O.L.I.D.

• An acronym for the first five object-oriented design(OOD)
principles by Robert C. Martin, popularly known as Uncle Bob.
– S – Single-responsiblity principle

• A class should have one and only one reason to change, meaning that a
class should have only one job.

– O – Open-closed principle
• Objects or entities should be open for extension, but closed for

modification.

– L – Liskov substitution principle
• Let q(x) be a property provable about objects of x of type T. Then q(y)

should be provable for objects y of type S where S is a subtype of T (every
subclass/derived class should be substitutable for their base/parent class.)

– I – Interface segregation principle
• A client should never be forced to implement an interface that it doesn’t

use or clients shouldn’t be forced to depend on methods they do not use.

– D – Dependency Inversion Principle
• Entities must depend on abstractions not on concretions. It states that the

high level module must not depend on the low level module, but they
should depend on abstractions.

T.Kubik: ISM

https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design

