Information systems modeling

Tomasz Kubik

(@0

OMG specifications adopted by ISO

Name [Acronym _ |Version _ [ISO documents
Business Process Model And Notation BPMN™ 2.0.1 19510:2013

Common Object Request Broker Architecture Ko{0]3=TXG); 3.1.1 Interfaces
19500-1:2012

Interoperability
19500-2:2012

Components
19500-3:2012
KDM 1.3 19506:2012
MOF ™ 14 19502:2005
MOF ™ 2.4.2 19508:2014
ocL™ 2.3.1 19507:2012
SysML®] 19514:2017
UML® 1.4 19501:2005
Unified Modeling Language UML® 2.4.1 Infrastructure
19505-1:2012
Superstructure
19505-2:2012
XMI® 2.0 19503:2005
XMI® 2.4.2 19509:2014

https://www.omg.org/spec/

T.Kubik: ISM

UML and SysML specifications

Name |Acronym __|Version __|Status | Adoption date

Unified Modeling UML® 2.5.1 formal Dec. 2017
SysML® 1.5 formal May 2017
Language

ISO/IEC 19505-1:2012, Information technology -- Object Management Group Unified
Modeling Language (OMG UML) -- Part 1: Infrastructure

ISO/IEC 19505-2:2012, Information technology -- Object Management Group Unified
Modeling Language (OMG UML) -- Part 2: Superstructure

ISO/IEC 19514:2017, Information technology -- Object management group systems
modeling language (OMG SysML)

https://www.omg.org/spec/

T.Kubik: ISM

OMG SysML

 The OMG Systems
Modeling Language ™
(OMG SysML®) is a
general-purpose graphical
modeling language for
specifying, analyzing, UML
designing, and verifying
complex systems that may
include hardware, software,
information, personnel,
procedures, and facilities.

Not required
by SysML

see also:

https://www.omg.org/spec/SysML/

http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf OMG Document Number: formal/2015-06-03
http://www.jhuapl.edu/ott/Technologies/Docs/ModelingwithSysMLTutorial. pdf

http://sysmlforum.com/sysml-fag/
https://re-magazine.ireb.org/issues/2015-2-bridging-the-impossible/modeling-requirements-with-sysml/
http://www.pld.ttu.ee/~helena_k/sysmi/slides/index.html

T.Kubik: ISM

Latest OMG SysML version

* Version 1.5 (OMG document formal/2017-56-01)
— available at: http://www.omg.org/spec/SysML/1.5/.

— introduces an Abstract Requirement (primary change
comparing to the previous version)

« to support other kinds of requirements such as property-
based requirements by extention

* enables more precise expressions of requirements beyond
purely text-based requirements.

Version
May 2017 https://www.omg.org/spec/SysML/1.5
August 2015 https://www.omg.org/spec/SysML/1.4
June 2012 https://www.omg.org/spec/SysML/1.3
June 2010 https://www.omg.org/spec/SysML/1.2
November 2008 https://www.omg.org/spec/SysML/1.1
September 2007 https://www.omg.org/spec/SysML/1.0

T.Kubik: ISM

http://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/SysML/1.4
https://www.omg.org/spec/SysML/1.3
https://www.omg.org/spec/SysML/1.2
https://www.omg.org/spec/SysML/1.1
https://www.omg.org/spec/SysML/1.0

SysML

« SysML Diagram Taxonomy

SysML
Diagram
: I
| Requirement :
| Diagram I
L I
| | | | l |
Activity Sequence Mglitiie Use Case DeriIr(:i(t:;n Ir:atﬁ)l'(r:\s I Package
Diagram Diagram : Diagram ; . Diagram
Diagram Diagram Diagram
Same as UML 2 l___f___-'
|
| . |
Modified from UML 2 | Parametric
| Diagram I
T |
I I'New L |

OMG Document Number: formal/2015-06-03

T.Kubik: ISM

The Four Pillars of SysML

1. Structure

2. Behavior

Al ABE ASk 0 Sl o [Eaquincs Dliljlill'lbj

bdd [package] VehicleStinucure [AES-Block Defindion Duagram] — iﬂlel’aﬂtim‘l
A definition
shiincke ahlbcks =hingks I d1: Traciios I I inl-Braki I
El-lmlmr e “'r:.'fﬂ" TeaT Tin Machis D L,J
e fenn i tro-Hyd saslic w0 T o T @Cton [S1ate Machirs Disgiany
At Conirolies Ve state ;
machine
t LosaCTiamtan
act wi"": ot PraverdLockup [Acty ity Disgram|
HIHI:-I:HM- LeschiZonn lher 1
[Ired errenl Black Disgram] J .l funﬂtlﬂh 1
di:Tractien W
[it
clmodlabn use Dietecal ivis 04 Modad sl
LA aCh Trasction Hrakingfaace
= Erake sindAck])
B ilulator

s

req[package] WehicleSpcficatons
[Regquinements Disgram-Braking Requraments)
par]coreriv e Blek] Steseghiline’ah ezbaD yn serec s [Paea meirs: Disgr i||||/J
Vi iche Symnes Braking Sebayssem Ll i £
Specilication Specilication ' =} L
HiakingFeice - . Te e o T
i]
o e Lo i Che
S ppingPlatessn Astl-Locki missmance i e \ L 'n' i
=" 1 d=" 337 E
lext="Tha wahick shall siop axt= Brakng subsyslem shal X
Trorn BO mph withen 150 it i vl b | B o wiredeer all ~ | u | "
on 3 clesn dry nudsce” hraking candiiany”
‘Dtancel qumion u] Wun:lr.i hﬂllnh
[v = dwi'dfi} o=
adermaFegts N ———
L

3. Requirements 4. Parametrics

Mote that the Fackage and Lise Case diagrams are not shawn in this example, bul are respectively pan of the structure and behavior pilars
http://www.omgsysml.org/what-is-sysml.htm

T.Kubik: ISM

SysML Requirements Diagram

* Arequirement specifies a capability or condition that must
be satisfied. A requirement can define a function that a
system must perform, or a performance condition a system
must achieve. A requirement can appear in other diagrams
to show its relationships to other model elements.

 Requirements have properties and links to other elements
(requirements or model elements).

https://www.microtool.de/en/what-is-a-requirements-diagram/
https://www.modeliosoft.com/en/resources/diagram-examples/requirement-diagrams.html

T.Kubik: ISM

SysML requirements

arequirements
Composite

Id = I.|5II
Text ="The system shall do A and B”

wrequirements «reguirement»
A B
Id ="5.1" Id="5,2"
Text = “The system shall do A" Text ="The systemn shall do B”
SysML Requirements stereotype SparxSystem SysML Requirements
Relationships Extensions
| Containment = [IRQIEIRM I Extended Requirement

«trace» I Functional Requirement
«copy>» I rface Reauirement

I Performance Requirement
«verify» [Phisical Requirement

LGOI «refine»
«satisfy» I Design Requirement

https://re-magazine.ireb.org/issues/2015-2-bridging-the-impossible/modeling-requirements-with-sysml/
http://sparxsystems.com/enterprise_architect user guide/12.1/systems_engineering/sysml_requirements.html

T.Kubik: ISM

SysML requirements

* A derive requirement relationship
between a derived requirement and a
source requirement

. «deriveReqt»
derived __________q _____ source
requirement requirement

https://www.sciencedirect.com/topics/computer-science/containment-relationship

T.Kubik: ISM

Requirements diagram

req RegDiagram)

<<requirement>>
Requirement Name

text="The system shall do"
1d="62j32."

<<namedElement>>
Element Name

refines
«requirement» Requirement Name

satisfies
«requirement» Requirement Name

tracedFrom
«requirement» Requirement Name

verifies
«requirement» Requirement Name

<<requirement>>
Requirement Name

derived
«requirement» Derived Reqt Name

derivedFrom
«requirement» DerivedFrom Reqt Name

master
«requirement» Master Reqt Name

refinedBy
«namedElement» Element Name

satisfiedBy
«namedElement» Element Name

tracedTo
«namedElement» Element Name

verifiedBy
«namedElement» Element Nameoperations

Id = "62j32"
Text = "The system shall do..."

<<requirement>>

T.Kubik: ISM

Parent
<<requirement>> <<requirement>>
Child1 Child2
<<testCase>>
TestCaseName

Requirements diagram

<<requirement>>
Slave

L- - - <<copy>>- ->

<<requirement>>
Master

<<requirement>>
Client

L -<<deriveReq>>>>

<<requirement>>
Supplier

<<requirement>>
RegA

AN

Master

<<requirement>> Master [

<<requirement>> Slave

NamedElement

- - -<<verify>> 2>

<<requirement>>
Supplier

NamedElement

NamedElement

- - -<<satisfy>>->>

<<requirement>>
Supplier

NamedElement

NamedElement

- - -<<refine>> -

<<requirement>>
Client

NamedElement

<<requirement>>
Client

- - - <<trace>> - >

<<requirement>>
Supplier

NamedElement

Derived
<<requirement>> ReqB

DerivedFrom
<<requirement>> ReqA

Verifies
<<requirement>> ReqA

VerifiedBy
NamedElement

Satisfies
<<requirement>> ReqA

SatisfiedBy
NamedElement

Refines
<<requirement>> RegA

RefinedBy
NamedElement

TracedFrom
<<requirement>> RegA

TracedTo
NamedElement

Kubik: ISM

<<requirement>>
RegB

<<requirement>>
RegA

<<requirement>>
RegA

<<requirement>>
RegA

<<requirement>>
RegA

Example

req MasterCylinderSafety /

\

ecelerate Car

\/

e «ref ne»

b

«rationale»
body = “This design of the brake

requirements.”

«requirement»
Master Cylinder Efficacy

assembly satisfies the federal safety

«block»
BrakeSystem

f: FrontBrake

id="S54.1"

compartment for each service brake
subsystem serviced by the master cyl
Loss of fluid from one compartment
shall not result in a complete loss of

text ="A master cylinder shall have a reservoir ——

brake fluid from another compartment.”

inder.

7
«deriveReqt»
ra

~

:(EieriveReq1>>

-
-

«requirement»
LossOfFluid

«requirement»
Reservoir

id="55.4.1a"
text ="Prevent complete loss of fluid”

id =“S54.1b”
text = "Separate reservoir compartment”

SatisfiedBy
BrakeSystem::m

«rationale»

1 body = “The best-practice

solution consists in using a set of
springs and pistons to confine the
loss to a single compartment”

/ _«satisfyn=""7

r: Rear Brake
|1: BrakeLine
- |2: BrakeLine
m: MasterCylinder

activateBrake()
releaseBrake()

«rationale»
body = “The best-practice
solution consists in assigning
one reservoir per brakeline.”

-

-
~
~

-
~

SatisfiedBy
BrakeSystem::I1
BrakeSystem::I2

A Rationale documents
the justification for
decisions and the
requirements, design,
and other decisions. A
Rationale can be
attached to any model
element including
relationships. It allows
the user, for example, to
specify a rationale that
may reference more
detailed documentation
such as a trade study or
analysis report.
Rationale is a stereotype
of comment and may be
attached to any other
model element in the
same manner as a
comment.

Figure 16.3 - Links between requirements and design

https://www.omg.org/spec/SysML/1.5/PDF

Requirements Layers

* How to organize them? /T ot —
— User requirements BoBBy S
. B Data
— System requirements R o cuiments
. . EIE Business
— Specification of software (D0 puthentcaton
p rOJ eCt Eltl Performance
.] I__FI :: :: Memn:ur.}.j' and speesd
— Functional requirements | B scalabiy

--E Security
B8 " " Cameo Infrastructure

— Non-functional requirements [Highvlevel Requirements
. . - Concrete
— Domain requirements

-] Logical Domain

[|

[|

https://www.nomagic.com/mbse/images/whitepapers/Requirements_Writing_in_SysML.pdf

T.Kubik: ISM

UML

* Helps you to specify, visualize,
L ob and document models of software
LANGUAGE

systems, including their structure
and design, in a way that meets all

of the requirements.

T.Kubik: ISM

UML Diagrams

* The taxonomy of structure
and behavior diagrams

— 13 diagrams, I
— 3 categories | |

Diagram

Structure Behaviour
Diagram Diagram
JAN JA
I I I I
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction State
Diagram Structure Diagram Diagram Diagram Machine
Diagram Diagram
JA
I I I
Sequence || Communication|| Interaction Timing
Notation: UML | Diagram Diagram Overview Diagram
Diagram

OMG Document Number: formal/15-03-01
see also:

https://www.uml-diagrams.org/uml-25-diagrams.html

T.Kubik: ISM

3 StudentDao use {3 DaoPattermDemo

n
C I aSS d Iag ral I l & addstudent(student ivoid | | & maintiinall vl

G" getAllStudents() ; List<Student= | 7~ ¢
G':" getStudentfint] : Student
Gﬁ' updateStudent{Student) : void

G" deleteStudent(Student) @ void ufen Ure
» depicts a static view of the model, or part R o
of the model © StudentDaompl © Student
- shows named classes, their attributes Fousampaomy | et
(fields), operations (or methods), @ connectg ; void & Studentistring, nt
relationships and associations e retden g |3 @ gemamet isting
. @& deleteStudent(Student) : void @ setMame(String) : void
« each class is represented by a rectangle @ getAlStudents(): List< Student ® getRollliap :int
with three compartments: name, attributes ettt ol & setholNofnt :void
and operation @ addStudent(Student] : void
» classes may have definitions of constraints,
tagged values and be stereotyped cinterace. S
— Note, that UML 2.5 standard hierarchy of + clavaCollection /alStudents : Student ™ | |, main { aras : Strina 111
diagrams (see UML 2.5 diagrams overview), + Getstudent (rolilio nt) : Student i |
shows class diagrams and object diagrams as @i L e
completely unrelated. Some other authoritative S | | |
UML sources state that component diagrams e e
and deployment diagrams containing only StudentDaolmp!
instance specifications are also special kinds of o e | |
object diagrams. StudentDzoinpi () =P
» depending on tools and chosen profiles the deleteStugent ()| @ nane sting
class diagrams can be styled in various Cpdatestudent () TR T T

ways (but should be consistent) rdHudentt

see Figure 11.29, Figure 11.26 in Unified Modeling Language 2.5.1 (https://www.omg.org/spec/UML/2.5.1/PDF)
see UML Class and Object Diagrams Overview (https://www.uml-diagrams.org/class-diagrams-overview.html)
see UML 2 Tutorial - Class Diagram (https://sparxsystems.com/resources/tutorials/uml2/class-diagram.html)

T.Kubik: ISM

Relationships in class diagram

« Associations are represented by lines with ends

“) . ——————= Association
— Arrows denote association end navigability

— All class-owned association ends are navigable (by > :hi_ma:':i
defini tIOn) ST > Implementation

— All association-owned ends are not navigable (by .
convention) > Depancency

— An association with neither end marked by < = Aggregation
navigability arrows means that the association is ®—> Composition
navigable in both directions _

— However if the dot notation is used, the absence of X > Non-navigable end
the dot signifies ownership by the association (but ————— Nesting
this explicit end-ownership notation is not mandatory _
and often not supported by the modeling tools) ® Qwning

— ends can be named and have declared multiplicity

* Association can have operations and attributes
— if so, it is modelled by an association class. £ Package
Q Class2 | * A2 + Al Q S

» Association is owned by a class if the definition A
of that class has a feature that is typed by the —
class at the opposite end. - frsodation

 Association is navigable if there is a pass
between association ends.

see: https://www.omg.org/ocup-2/documents/getting_it_right_on_the_dot.pdf

T.Kubik: ISM

Navigation vs owning

« Navigability is a run-time concept. It identifies
whether or not it is possible to efficiently navigate
from an instance of one class to an instance of an Owner
associated class at run time. This requirement can
be met by declaring class attributes referring to the
objects of other classes (tables, list and other Owner |oner "3"33“3"1 Bicycle
constructs are possible). A bidirectional association 0.7 0.
between two classes means that both objects on
both sides know about each other. Equivalent UML 1 (top) and UML 2

« Navigability concept differs from owning concept. (bottom) diagrams
Navigability in UML is rather vague and has lost
much of its value for modeling. In a sense, the https://www.omg.org/ocup-
concept has been deprecated in UML 2 and even 2ldocuments/getting_it_right_on_the_dot.pdf
more so in later revisions, such as UML 2.5......
there is little real need for using those arrowheads in
models.

-owner -bicycle
0.7 0.7

Bicycle

Access modifiers:
| modifier | symbol | description
| public &3 any object can access such field or method anywhere in the program
accessible only from within the owning class
accessible from within the owning class or a subclass of that class
accessible for the objects of other classes within the same package

! ® !

T.Kubik: ISM

Examples

Dictionary = DictEntry
entries
T T
Dictionary |[= DictEntry
T EntriES T
Dictionary DictEntry
T— entriea T
Dictionary > DictEntry
entries
—
Dictionary |4 = DictEntry
entries
— A

One directional

public class Dictionary {
private DictEntry d0,dl,d2; }

public class DictEntry{}

Bi-directional
public class Dictionary {
private DictEntry dO0, dl, d2;}
public class DictEntry {
private Dictionary owner;}

One directional infinite multiplicity

- when the Dictionary would have (n) references from
DicEntry classes, but the size is unknown,

- it's useful when Dictionary is kinda abstract definition

Aggregation

- isused when Dictionary is kinda container for DicEntry but
with Dictionary object finalization (kill) the hosted DicEntry
objects would continue their lives (keep persistent)

public class Dictionary {
// when dics are injected and kept alive

private List<DicEntry> dics; }
public class DictEntry{}

Composition differs from Aggregation in that way, that finalization
of Dictionary causes finalization of the hosted objects
DicEntry

T.Kubik: ISM

Examples

= 5

COLTSE Course

Transcript

class Student { class Student {

public Set<Transcript> transcripts; public Map<Student, Transcript> transcripts;
} }
class Transcript { class Transcript {

Student student; Student student;

Course course; Course course;

Date subscriptionDate; Date subscriptionDate;
} }
class Course { class Course {

Set<Transcript> transcripts; Map<Student, Transcript> transcripts;

} }

 UML-to-dava mapping (forward engineering) and Java-to-UML mapping (backward
engineering) might be not unique. All depends on how these mappings are defined.

* Inthe example presented the Set class can be substituded by the List or Map classes
without breaking the model.

T.Kubik: ISM

Nested class

public class A {
public class B {

int 1i;
})))) «lava Class» wlava Classn
public final static void method (String a) { Ga o (E]:]
o | 2 & jrint
: ﬁsm_ain_[_]_
public final static void method2 (String a) {
}
public static void main (String ... args){
int j;
}
}
see also:

» Essentials of modeling with Rational Software Architect - Self-paced training
(https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.1.2/com.ibm.xtools.gs_using_rsx.doc/to
pics/c_gs_essentials_of rsa.html) — this is the whole course on UML modeling in IBM RSA

* UML Class Diagram Tutorial (https://www.visual-paradigm.com/guide/uml-unified-modeling-
language/uml-class-diagram-tutorial/)

T.Kubik: ISM

Component diagrams

«components «components
=] ThesguriSenricE = | SesameFramework
rest ; JAX-WS_REST SeRCL ROL Adrmin Export
o :l__h wdelegaten»
BN SAIL API
thesauri © Thesauri
soap @ JAX-WS_sodP ((dE|E'§Iatt.§3):? IJOBC Mative MEFI"IDI"}.-'
“Components
= |SesameServer
4 A
winterfaces winterfaces
SesameGraphApi SesameRepositoryApi
= =7
“USE”“-.‘ _.-” LW =50
=] Thesauri

https://www.uml-diagrams.org/component-diagrams.html
https://www.uml-diagrams.org/deployment-diagrams-overview.html

T.Kubik: ISM

Deployment diagrams

wnodes enodes
[FINode1 JNode1
:
wevices . .
— devicel ; Devicel
De!i(e1
wexecutionEnvironments executionEnvironment? : ExecutionEnvironment1
@ ExecutionEnvironment 1
O Interfacel =]
o— Interface? O— component] : Component]
O— | scomponents
= | Component1 =a
-
- anoder wnodes
N N edevices sexecutionEnvironments))
= b { T [{ (2] ExecutionEnviranment1 [5] DesktopClient [=] BrowserClient
) P = :
) — F compenent? : Component] r
[,
Y [
\‘_ i
. i
“ i
., ;
o Interfacel =1 _‘__\‘ I..’
©O— component] : Component] “ﬂOdEH
[F]WebServer

resk : JAK-WS_REST

3

]
thesauriService : ThesauriService

3

H
sesameFramework: | SesameFramewaork:
[2 |

soap | JAK-WS_S0AP

see also: https://www.uml-diagrams.org/deployment-diagrams.html

T.Kubik: ISM

Sequence diagram

| cConcretelmplementort | |graphic1 : H CConcretelmplementor2 ngaphicz: |

quE Ll public void drawLine{)

r

alt |) pubiic void drawLin%Impl{)
T

‘ :Dialng_Windnw|

i public void | drawFrame()

public void graphLline[:n
T

B R S
—]

see also:
https://www.visual-paradigm.com/tutorials/how-to-draw-uml-sequence-diagram.jsp

T.Kubik: ISM

State machine diagram

2. You are given the following state machine diagram. What is the value of x after the occurrence of the
event chain

eleledebe7ed?

A N\
4 c ™
entry / x++ E
x=3 exit / x-- iry !
en X++
o= @ = c2/x=x2
el / x++

'\e:_tit [x=x-2 /'
eal A
e4
es H

tryd x=x:2
NI~ ¥
/

eb x=(x*4)+2

https://stackoverflow.com/questions/34734278/what-is-an-order-of-transitions-in-
state-diagram-how-to-use-history-pseudo-stat?rq=1

T.Kubik: ISM

Activity diagram

Activity state

/ Alternative threads
4 To aiport

travel agency)

& Concurrent threads
preferences

Werify
res ervation

Decision (branch)

_‘_T—__‘k_—_‘———

Guard condition

[ipchrract)

[comed|]
Synchronization bar (fork)

Transition
[no baggs
[baggage] X

Print
boardinge ard

Receve baggage
and print rec eipt

Synchronization bar (join)
——‘‘——.

\
Give travel documentation
to passen ger

e

http://www.ibm.com/developerworks/rational/library/2802.html

T.Kubik: ISM

