
Information systems modeling

Tomasz Kubik

OMG specifications adopted by ISO

Name Acronym Version ISO documents

Business Process Model And Notation BPMN™ 2.0.1 19510:2013

Common Object Request Broker Architecture CORBA® 3.1.1 Interfaces

19500-1:2012

Interoperability

19500-2:2012

Components

19500-3:2012

Knowledge Discovery Metamodel KDM 1.3 19506:2012

Meta Object Facility MOF™ 1.4 19502:2005

Meta Object Facility MOF™ 2.4.2 19508:2014

Object Constraint Language OCL™ 2.3.1 19507:2012

OMG System Modeling Language SysML® 1.4 19514:2017

Unified Modeling Language UML® 1.4 19501:2005

Unified Modeling Language UML® 2.4.1 Infrastructure

19505-1:2012

Superstructure

19505-2:2012

XML Metadata Interchange XMI® 2.0 19503:2005

XML Metadata Interchange XMI® 2.4.2 19509:2014

T.Kubik: ISM

https://www.omg.org/spec/

UML and SysML specifications

Name Acronym Version Status Adoption date

Unified Modeling

Language

UML® 2.5.1 formal Dec. 2017

OMG System Modeling

Language

SysML® 1.5 formal May 2017

T.Kubik: ISM

https://www.omg.org/spec/

ISO/IEC 19505-1:2012, Information technology -- Object Management Group Unified

Modeling Language (OMG UML) -- Part 1: Infrastructure

ISO/IEC 19505-2:2012, Information technology -- Object Management Group Unified

Modeling Language (OMG UML) -- Part 2: Superstructure

ISO/IEC 19514:2017, Information technology -- Object management group systems

modeling language (OMG SysML)

OMG SysML

• The OMG Systems
Modeling Language™
(OMG SysML®) is a
general-purpose graphical
modeling language for
specifying, analyzing,
designing, and verifying
complex systems that may
include hardware, software,
information, personnel,
procedures, and facilities.

T.Kubik: ISM

OMG Document Number: formal/2015-06-03

UML SysML

Extentions
to UML

Not required
by SysML

Reused
by SysML

see also:

https://www.omg.org/spec/SysML/

http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-Final-090901.pdf

http://www.jhuapl.edu/ott/Technologies/Docs/ModelingwithSysMLTutorial.pdf

http://sysmlforum.com/sysml-faq/

https://re-magazine.ireb.org/issues/2015-2-bridging-the-impossible/modeling-requirements-with-sysml/

http://www.pld.ttu.ee/~helena_k/sysml/slides/index.html

UML4SysML

Latest OMG SysML version

• Version 1.5 (OMG document formal/2017-56-01)

– available at: http://www.omg.org/spec/SysML/1.5/.

– introduces an Abstract Requirement (primary change
comparing to the previous version)

• to support other kinds of requirements such as property-
based requirements by extention

• enables more precise expressions of requirements beyond
purely text-based requirements.

T.Kubik: ISM

Version Adoption Date URL

1.5 May 2017 https://www.omg.org/spec/SysML/1.5

1.4 August 2015 https://www.omg.org/spec/SysML/1.4

1.3 June 2012 https://www.omg.org/spec/SysML/1.3

1.2 June 2010 https://www.omg.org/spec/SysML/1.2

1.1 November 2008 https://www.omg.org/spec/SysML/1.1

1.0 September 2007 https://www.omg.org/spec/SysML/1.0

http://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/SysML/1.4
https://www.omg.org/spec/SysML/1.3
https://www.omg.org/spec/SysML/1.2
https://www.omg.org/spec/SysML/1.1
https://www.omg.org/spec/SysML/1.0

SysML

• SysML Diagram Taxonomy

T.Kubik: ISM

OMG Document Number: formal/2015-06-03

Modified from UML 2

Same as UML 2

New

SysML

Diagram

Behavior

Diagram
Structure

Diagram

Activity
Diagram

Sequence

Diagram

State

Machine

Diagram

Use Case

Diagram

Block

Definition

Diagram

Internal

Block

Diagram

Package
Diagram

Parametric

Diagram

Requirement

Diagram

The Four Pillars of SysML

T.Kubik: ISM

http://www.omgsysml.org/what-is-sysml.htm

SysML Requirements Diagram

• A requirement specifies a capability or condition that must
be satisfied. A requirement can define a function that a
system must perform, or a performance condition a system
must achieve. A requirement can appear in other diagrams
to show its relationships to other model elements.

• Requirements have properties and links to other elements
(requirements or model elements).

T.Kubik: ISM

https://www.microtool.de/en/what-is-a-requirements-diagram/

https://www.modeliosoft.com/en/resources/diagram-examples/requirement-diagrams.html

SysML requirements

SysML Requirements

Relationships

stereotype

Containment «contain»

Trace «trace»

Copy «copy»

Derive «deriveReqt»

Verify «verify»

Refine «refine»

Satisfy «satisfy»

T.Kubik: ISM

https://re-magazine.ireb.org/issues/2015-2-bridging-the-impossible/modeling-requirements-with-sysml/

http://sparxsystems.com/enterprise_architect_user_guide/12.1/systems_engineering/sysml_requirements.html

SparxSystem SysML Requirements

Extensions

Extended Requirement

Functional Requirement

Interface Requirement

Performance Requirement

Phisical Requirement

Design Requirement

SysML requirements

• A derive requirement relationship

between a derived requirement and a

source requirement

T.Kubik: ISM

https://www.sciencedirect.com/topics/computer-science/containment-relationship

«deriveReqt»
derived

requirement
source

requirement

Requirements diagram

T.Kubik: ISM

<<requirement>>
 Parent

<<requirement>>
 Child1

<<requirement>>

Child2

<<testCase>>
 TestCaseName

<<requirement>>
 Requirement Name

derived

«requirement» Derived Reqt Name

derivedFrom

«requirement» DerivedFrom Reqt Name

master

«requirement» Master Reqt Name

refinedBy

«namedElement» Element Name

satisfiedBy

«namedElement» Element Name

tracedTo

«namedElement» Element Name

verifiedBy

«namedElement» Element Nameoperations

Id = "62j32"

Text = "The system shall do..."

<<namedElement>>
 Element Name

refines

«requirement» Requirement Name

satisfies

«requirement» Requirement Name

tracedFrom

«requirement» Requirement Name

verifies

«requirement» Requirement Name

req ReqDiagram

<<requirement>>
 Requirement Name

text="The system shall do"
 Id="62j32."

Requirements diagram

<<requirement>>
 Slave

<<requirement>>
 Master

<<copy>>

<<requirement>>

Client

<<requirement>>

Supplier
<<deriveReq>>

NamedElement
<<requirement>>

 Supplier
<<satisfy>> NamedElement

Satisfies

<<requirement>> ReqA

SatisfiedBy
 NamedElement

<<requirement>>
 ReqA

NamedElement
<<requirement>>

Supplier
<<verify>>

NamedElement
<<requirement>>

 Client
<<refine>>

<<requirement>>
 Client

<<requirement>>
 Supplier

<<trace>>
TracedTo

 NamedElement

<<requirement>>
 ReqA

NamedElement
TracedFrom

 <<requirement>> ReqA

NamedElement
Refines

 <<requirement>> ReqA

RefinedBy
 NamedElement

<<requirement>>
 ReqA

NamedElement
Verifies

<<requirement>> ReqA

VerifiedBy

NamedElement

<<requirement>>

ReqA

<<requirement>>

ReqA

Derived

<<requirement>> ReqB

DerivedFrom

<<requirement>> ReqA

<<requirement>>

ReqB

Master
 <<requirement>> Master

<<requirement>> Slave

T.Kubik: ISM

Example

T.Kubik: ISM

https://www.omg.org/spec/SysML/1.5/PDF
Figure 16.3 - Links between requirements and design

A Rationale documents
the justification for
decisions and the
requirements, design,
and other decisions. A
Rationale can be
attached to any model
element including
relationships. It allows
the user, for example, to
specify a rationale that
may reference more
detailed documentation
such as a trade study or
analysis report.
Rationale is a stereotype
of comment and may be
attached to any other
model element in the
same manner as a
comment.

Requirements Layers

• How to organize them?

– User requirements

– System requirements

– Specification of software
project

– Functional requirements

– Non-functional requirements

– Domain requirements

T.Kubik: ISM

https://www.nomagic.com/mbse/images/whitepapers/Requirements_Writing_in_SysML.pdf

UML

• Helps you to specify, visualize,

and document models of software

systems, including their structure

and design, in a way that meets all

of the requirements.

T.Kubik: ISM

UML Diagrams

• The taxonomy of structure
and behavior diagrams
– 13 diagrams,

– 3 categories

T.Kubik: ISM

Diagram

Structure

Diagram

Behaviour

Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Activity
Diagram

Use Case
Diagram

Profile
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Interaction
Diagram

State
Machine
Diagram

Sequence

Diagram

Communication

Diagram

Interaction
Overview
Diagram

Timing
DiagramNotation: UML

OMG Document Number: formal/15-03-01
see also:

https://www.uml-diagrams.org/uml-25-diagrams.html

Class diagram

• depicts a static view of the model, or part
of the model

• shows named classes, their attributes
(fields), operations (or methods),
relationships and associations

• each class is represented by a rectangle
with three compartments: name, attributes
and operation

• classes may have definitions of constraints,
tagged values and be stereotyped

– Note, that UML 2.5 standard hierarchy of
diagrams (see UML 2.5 diagrams overview),
shows class diagrams and object diagrams as
completely unrelated. Some other authoritative
UML sources state that component diagrams
and deployment diagrams containing only
instance specifications are also special kinds of
object diagrams.

• depending on tools and chosen profiles the
class diagrams can be styled in various
ways (but should be consistent)

T.Kubik: ISM

see Figure 11.29, Figure 11.26 in Unified Modeling Language 2.5.1 (https://www.omg.org/spec/UML/2.5.1/PDF)

see UML Class and Object Diagrams Overview (https://www.uml-diagrams.org/class-diagrams-overview.html)

see UML 2 Tutorial - Class Diagram (https://sparxsystems.com/resources/tutorials/uml2/class-diagram.html)

Relationships in class diagram

• Associations are represented by lines with ends
– Arrows denote association end navigability

– All class-owned association ends are navigable (by
definition)

– All association-owned ends are not navigable (by
convention)

– An association with neither end marked by
navigability arrows means that the association is
navigable in both directions

– However if the dot notation is used, the absence of
the dot signifies ownership by the association (but
this explicit end-ownership notation is not mandatory
and often not supported by the modeling tools)

– ends can be named and have declared multiplicity

• Association can have operations and attributes
– if so, it is modelled by an association class.

• Association is owned by a class if the definition
of that class has a feature that is typed by the
class at the opposite end.

• Association is navigable if there is a pass
between association ends.

T.Kubik: ISM

see: https://www.omg.org/ocup-2/documents/getting_it_right_on_the_dot.pdf

Navigation vs owning

• Navigability is a run-time concept. It identifies

whether or not it is possible to efficiently navigate

from an instance of one class to an instance of an

associated class at run time. This requirement can

be met by declaring class attributes referring to the

objects of other classes (tables, list and other

constructs are possible). A bidirectional association

between two classes means that both objects on

both sides know about each other.

• Navigability concept differs from owning concept.

Navigability in UML is rather vague and has lost

much of its value for modeling. In a sense, the

concept has been deprecated in UML 2 and even

more so in later revisions, such as UML 2.5……

there is little real need for using those arrowheads in

models.

T.Kubik: ISM

https://www.omg.org/ocup-

2/documents/getting_it_right_on_the_dot.pdf

Equivalent UML 1 (top) and UML 2

(bottom) diagrams

modifier symbol description

public + any object can access such field or method anywhere in the program

private - accessible only from within the owning class

protected # accessible from within the owning class or a subclass of that class

package ~ accessible for the objects of other classes within the same package

Access modifiers:

Examples

T.Kubik: ISM

One directional

public class Dictionary {

private DictEntry d0,d1,d2; }

public class DictEntry{}

Bi-directional

public class Dictionary {

private DictEntry d0, d1, d2;}

public class DictEntry {

private Dictionary owner;}

One directional infinite multiplicity
- when the Dictionary would have (n) references from

DicEntry classes, but the size is unknown,

- it's useful when Dictionary is kinda abstract definition

Aggregation
- is used when Dictionary is kinda container for DicEntry but

with Dictionary object finalization (kill) the hosted DicEntry

objects would continue their lives (keep persistent)

public class Dictionary {

// when dics are injected and kept alive

private List<DicEntry> dics; }

public class DictEntry{}

Composition differs from Aggregation in that way, that finalization
of Dictionary causes finalization of the hosted objects

DicEntry

Examples

T.Kubik: ISM

• UML-to-Java mapping (forward engineering) and Java-to-UML mapping (backward
engineering) might be not unique. All depends on how these mappings are defined.

• In the example presented the Set class can be substituded by the List or Map classes
without breaking the model.

class Student {

public Set<Transcript> transcripts;

}

class Transcript {

Student student;

Course course;

Date subscriptionDate;

}

class Course {

Set<Transcript> transcripts;

}

class Student {

public Map<Student,Transcript> transcripts;

}

class Transcript {

Student student;

Course course;

Date subscriptionDate;

}

class Course {

Map<Student,Transcript> transcripts;

}

Nested class

T.Kubik: ISM

see also:

• Essentials of modeling with Rational Software Architect - Self-paced training

(https://www.ibm.com/support/knowledgecenter/SS8PJ7_9.1.2/com.ibm.xtools.gs_using_rsx.doc/to

pics/c_gs_essentials_of_rsa.html) – this is the whole course on UML modeling in IBM RSA

• UML Class Diagram Tutorial (https://www.visual-paradigm.com/guide/uml-unified-modeling-

language/uml-class-diagram-tutorial/)

public class A {

public class B {

int i;

}

public final static void method(String a) {

}

public final static void method2(String a) {

}

public static void main(String ... args){

int j;

}

}

Component diagrams

T.Kubik: ISM

https://www.uml-diagrams.org/component-diagrams.html

https://www.uml-diagrams.org/deployment-diagrams-overview.html

Deployment diagrams

T.Kubik: ISM

see also: https://www.uml-diagrams.org/deployment-diagrams.html

Sequence diagram

T.Kubik: ISM

see also:

https://www.visual-paradigm.com/tutorials/how-to-draw-uml-sequence-diagram.jsp

State machine diagram

T.Kubik: ISM

https://stackoverflow.com/questions/34734278/what-is-an-order-of-transitions-in-

state-diagram-how-to-use-history-pseudo-stat?rq=1

Activity diagram

T.Kubik: ISM

http://www.ibm.com/developerworks/rational/library/2802.html

