
Information systems modeling

Tomasz Kubik

Design Pattern

“Each pattern describes a problem which occurs over and over
again in our environment and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it in the same
way twice”

Ch.W. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S.
Angel: A Pattern Language: Towns, Buildings, Construction, 1977

Design patterns are “descriptions of communicating objects and
classes that are customized to solve a general design problem in a
particular context.”

E. Gamma, R. Helm, R. Johnson, J. Vlissides (Gang of Four): Design Patterns:
Elements of Reusable Object-Oriented Software, 1994

Design patterns can be expressed at various abstraction levels
– OO programming (like GoF patterns)

• Structure, Creational, and Behavioral

– Design and implementation of the multi-tier software
• Presentation, Business and Integration

T.Kubik: ISM

Design Pattern

“All well-structured systems are full of patterns.
A pattern provides a good solution to a common
problem in a given context. A mechanism is a design
pattern that applies to a society of classes;
a framework is typically an architectural pattern that
provides an extensible template for applications
within a domain.

You use patterns to specify mechanisms and
frameworks that shape the architecture of your system.
You make a pattern approachable by clearly identifying
the slots, tabs, knobs, and dials that a user of that
pattern may adjust to apply the pattern in a particular
context.”

G. Booch, J. Rumbaugh, I. Jacobson: The Unified
Modeling Language User Guide, 2005

T.Kubik: ISM

Design Pattern

• re-usable solution to recurring problem, applied and tested

• template that can be adapted according to needs

• relies on the use of OO concepts (see also: Object-oriented
analysis, design, modeling: OOA, OOD, OOM) :
– aggregation

– inheritance

– encapsulation

– interface

– polymorphism

• can be defined with the use of:
– class diagram to represent structure

– sequence diagram to represent behavior

T.Kubik: ISM

https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm

Essential elements of Design

Pattern according to GoF
1.The pattern name is a handle we can use to describe a design

problem, its solutions, and consequences in a word or two.
2.The problem describes when to apply the pattern. It explains the

problem and its context.
3.The solution describes the elements that make up the design,

their relationships, responsibilities, and collaborations. The pattern
provides an abstract description of a design problem and how a
general arrangement of elements (classes and objects in our case)
solves it.

4.The consequences are the results and trade-offs of applying the
pattern, costs and benefits of applying the pattern.

Generally: the use of design patterns supports the creation
of high-quality software in an efficient manner.

T.Kubik: ISM

Main goals of GOF patterns

• Creational pattern
– isolation of the rules for creating objects from the rules that

determine how the use of these objects (separation of the
code for creating objects from the code that uses them)

• Structural patterns
– grouping classes and objects into larger structures

• Class design pattern: use of inheritance and polymorphism to
make structures of interfaces and their implementations

• Object design pattern: describe a way how to combine objects in
order to obtain a new functionality, even during program
execution

• Behavioral patterns
– allocating algorithms and obligations to objects, covering

the patterns of objects and classes, and communication
between objects

T.Kubik: ISM

GoF Design Patterns classification

Purpose
reflects what a pattern does

Scope
domain over which it applies

Creational
creation process of

Structural
composition of

Behavioral
interaction & responsibility of

Class
- relationship between classes

& subclasses;

- statically defined at run-time

Factory Method Adapter (class) Interpreter

Template Method

Object
- object relationships (what

type?)

- manipulating at runtime (so

what?)

Abstract Factory

Builder

Prototype

Singleton

Adapter (object)

Bridge

Composite

Decorator

Flyweight

Facade

Proxy

Chain of Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

T.Kubik: ISM

GoF Design Patterns classification

– examples with description
Purpose

Scope Creational Structural Behavioral

Class Factory Method

defers object creation to

sub-classes

Adapter

applies inheritance to

compose classes

Template Method

uses inheritance to

describe flow of control,

algorithms

Object Abstract Factory

defers object creation to

other objects

Adapter

deals with object

assembly

Iterator

makes use of group of

objects working together

to carry out a task

T.Kubik: ISM

GoF Design Pattern Template

Subject Explanation

Pattern Name and

Classification

obvious

Intent a brief overview on: purpose of the pattern, its rationale and intent,

problems addressed

Also Known As any other synonyms

Motivation a scenario illustrating problem and the pattern’s use

Applicability situations in which pattern can be applied

Structure a graphical representation (in UML)

Participants participating classes and/or objects with their responsibilities

Collaborations how these participants collaborate to carry out their responsibilities

Consequences the results of application, benefits, trade-offs, liabilities

Implementation pitfalls, hints, techniques, language-specific issues

Sample Code obvious

Known Uses real life examples from at least two different domains.

Related Patterns connections with other patterns

T.Kubik: ISM

Singleton

T.Kubik: ISM

https://www.geeksforgeeks.org/java-singleton-design-pattern-practices-examples/

https://www.vainolo.com/2012/04/29/singleton-design-pattern-sequence-diagram/

https://www.javaworld.com/article/2073352/core-java/simply-singleton.html

https://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples

• used when exactly one instance of a class

is required

• applied when controlled access to a single

object is necessary

• ensures that only one instance of a class

is allowed within a system.

Singleton

T.Kubik: ISM

public class Client {

public Client(){}

public void singletonInitializer() {

Singleton s = Singleton.getInstance();

s.operation();

}

}

public class Singleton {

private static Singleton instance;

public void operation() { System.out.println("operation"); }

private Singleton() { }

public static Singleton getInstance() {

if (instance == null) {

synchronized (Singleton.class) {

if (instance == null) instance = new Singleton();

} }

return instance;

}

}

Singleton

T.Kubik: ISM

public class Demo {

public static void main(String[] args) {

Client c = new Client();

c.singletonInitializer();

Singleton singleton = Singleton.getInstance();

singleton.operation();

Singleton anotherSingleton = Singleton.getInstance();

anotherSingleton.operation();

if (singleton == anotherSingleton) {

System.out.println("Singleton and anotherSingleton are the

same");

} else {

System.out.println("Singleton and anotherSingleton are

different");

}

}

}

Factory method pattern

T.Kubik: ISM

• used when a client doesn't know what concrete classes it will be required to create

at runtime, but just wants to get a class that will do the job

• exposes a method to the client for creating the (single) object

• hides the construction of single object

• uses inheritance and relies on derived class or sub class to create object

Factory method pattern

T.Kubik: ISM

public interface AbstractProduct {

public void feature();

}

public class ConcreteProduct implements AbstractProduct {

public ConcreteProduct(){

System.out.println("Created: concrete product instance");

}

@Override

public void feature() {

System.out.println("Called: concrete product feature");

}

}

Factory method pattern

T.Kubik: ISM

public class Demo {

public static void main(String[] args) {

AbstractCreator factory = new ConcreteCreator();

factory.anOperation();

}

}

public abstract class AbstractCreator {

protected abstract AbstractProduct factoryMethod();

public void anOperation(){

AbstractProduct ap = factoryMethod();

ap.feature();

}

}

public class ConcreteCreator extends AbstractCreator {

@Override

public AbstractProduct factoryMethod() {

System.out.println("Called: implementation of factory method; "

+ "will return: ConcreteProduct instance");

return new ConcreteProduct();

}

}

Abstract factory pattern

T.Kubik: ISM

• used when there is a need to create multiple families of products or to provide a

library of products without exposing the implementation details

• uses composition to delegate responsibility of creating object to another class

Abstract factory pattern

T.Kubik: ISM

public interface Window { // Abstract product

public void repaint();

public void setTitle(String text);

}

public class MSWindow implements Window { //Concrete product

@Override

public void repaint() {

// MS Windows specific behaviour

}

@Override

public void setTitle(String text) {

// TODO Auto-generated method stub

}

}

public class MacOSXWindow implements Window { //Concrete product

@Override

public void repaint() {

// Mac OSX specific behaviour

}

@Override

public void setTitle(String text) {

// TODO Auto-generated method stub

}

}

Abstract factory pattern

T.Kubik: ISM

// Abstract factory

public interface AbstractWidgetFactory {

public Window createWindow();

}

// Concrete factory

public class MacOSXWidgetFactory implements AbstractWidgetFactory {

@Override

public Window createWindow() {

MacOSXWindow window = new MacOSXWindow();

return window;

}

}

//Concrete factory

public class MsWindowsWidgetFactory implements AbstractWidgetFactory {

@Override

public Window createWindow() {

MSWindow window = new MSWindow();

return window;

}

}

Abstract factory pattern

T.Kubik: ISM

// Client

public class GUIBuilder {

public void buildWindow(AbstractWidgetFactory widgetFactory) {

Window window = widgetFactory.createWindow();

window.setTitle("New Window");

}

}

// Running example

public class Main {

public static void main(String[] args) {

GUIBuilder builder = new GUIBuilder();

AbstractWidgetFactory widgetFactory = null;

if (System.getProperty("os.name").contains("Windows"))

widgetFactory = new MsWindowsWidgetFactory();

else

widgetFactory = new MacOSXWidgetFactory();

builder.buildWindow(widgetFactory);

}

}

Abstract Factory vs Factory Method

T.Kubik: ISM

The main difference between Abstract Factory and Factory Method is that:

• with the Abstract Factory pattern, a class delegates the responsibility of object

instantiation to another object via composition;

• Factory Method pattern uses inheritance and relies on a subclass to handle

the desired object instantiation.

Abstract Factory is implemented by Composition;

but Factory Method is implemented by Inheritance.

Bridge pattern

T.Kubik: ISM

• used when there is a need to decouple an abstraction from its implementation so
that the two can vary independently

• comes under structural pattern as decouples implementation class and abstract
class by providing a bridge structure between them

• involves an interface that acts as a bridge which makes the functionality of
concrete classes independent from interface implementer classes thus both
types of classes can be altered structurally without affecting each other.

https://www.tutorialspoint.com/design_pattern/bridge_pattern.htm

Bridge pattern

T.Kubik: ISM

public interface IDraw {

public void drawCircle(int radius, int x, int y);

}

public class RedCircle implements IDraw {

@Override

public void drawCircle(int radius, int x, int y) {

System.out.println("Drawing Circle[color: red, radius: " +

radius + ", x: " + x + ", " + y + "]");

}

}

public class BlueCircle implements IDraw {

@Override

public void drawCircle(int radius, int x, int y) {

System.out.println("Drawing Circle[color: blue, radius: " +

radius + ", x: " + x + ", " + y + "]");

}

}

Bridge pattern

T.Kubik: ISM

public abstract class Shape {

protected IDraw idraw;

protected Shape(IDraw idraw) {

this.idraw = idraw; }

public abstract void draw();

}

public class Circle extends Shape {

private int x, y, radius;

public Circle(int x, int y, int radius, IDraw idraw) {

super(idraw);

this.x = x; this.y = y;

this.radius = radius;

}

public void draw() {

idraw.drawCircle(radius, x, y);

}

}

public class Demo {

public static void main(String[] args) {

Shape redCircle = new Circle(20, 20, 10, new RedCircle());

Shape greenCircle = new Circle(20, 20, 10, new BlueCircle());

redCircle.draw(); greenCircle.draw(); }

}

Prototype pattern

T.Kubik: ISM

• used when composition, creation, and representation of objects should be decoupled

from a system

• relies on new objects creation through cloning and modifying of existing and initialized

prototypes (what is especially productive in case of expensive initialization)

• helpful when classes to be created are specified at runtime

Prototype pattern

T.Kubik: ISM

public interface Prototype extends Cloneable {

public abstract Prototype clonePrototype() throws

CloneNotSupportedException;

public abstract void operation();

public abstract void init(String s);

}

public class ConcretePrototype1 implements Prototype

{

private String s;

@Override

public Prototype clonePrototype() throws

CloneNotSupportedException {

return (ConcretePrototype1) clone();

}

@Override

public void operation() {

System.out.println(s);

}

@Override

public void init(String s) {

this.s = s.toUpperCase();

}

}

public class Sample {

public static void main(String[] args) {

try {

Prototype p1 = new ConcretePrototype1();

p1.init("test TEST");

p1.clonePrototype().operation();

p1.init("another ANOTHER");

p1.clonePrototype().operation();

Prototype p2 = new ConcretePrototype2();

p2.init("test TEST");

p2.clonePrototype().operation();

} catch (CloneNotSupportedException e) {

e.printStackTrace();

}

}

}

Facade pattern

T.Kubik: ISM

• used to wrap a complicated subsystem with a simpler interface

• defines a higher-level interface that makes the subsystem easier to use

Facade pattern

T.Kubik: ISM

public class ComputerFacade {

private static final long BOOT_ADDRESS = 0;

private static final long BOOT_SECTOR = 0;

private static final int SECTOR_SIZE = 0;

private final CPU processor;

private final HD hd;

private final Mem ram;

public ComputerFacade() {

processor = new CPU();

hd = new HD();

ram = new Mem();

}

void start() {

processor.freeze();

ram.load(BOOT_ADDRESS, hd.read(BOOT_SECTOR,

SECTOR_SIZE));

processor.jump(BOOT_ADDRESS);

processor.execute();

}

}

public class CPU {

public void freeze() { }

public void jump(long position) { }

public void execute() { }

}

public class HD {

public char[] read(long lba, int size) {

return null; }

}

public class Mem {

public void load(long position, char[]

data) {}

}

Multitiered Information System

T.Kubik: ISM

Data Access Object, Service

Activator, Domain Store, Web

Service Broker

Design and implementation of the multi-tier software can be based on

Presentation, Business and Integration Patterns.

Distributed Multitiered Applications

T.Kubik: ISM

http://docs.oracle.com/javaee/5/tutorial/doc/bnaay.html

* please note that technologies depicted are a bit outdated

Distributed Multitiered Applications

T.Kubik: ISM

http://docs.oracle.com/javaee/5/tutorial/doc/bnaay.html

* please note that technologies depicted are a bit outdated

Web technology stack

T.Kubik: ISM

http://svsg.co/how-to-choose-your-tech-stack/

Web technology stack

T.Kubik: ISM http://dreamix.eu/blog/java/elasticsearch-spring-boot-and-angular-js-into-action-for-building-b2c-web-applications
http://www.slideshare.net/sagaroceanic11/understanding-c-for-java

The Patterns for e-business layered

asset model
“The Patterns approach is based on a set of layered assets that can be exploited by any existing

development methodology. These layered assets are structured in a way that each level of detail

builds on the last. These assets include:

• Business patterns that identify the interaction between users, businesses, and data.

• Integration patterns that tie multiple Business patterns together when a solution cannot be

provided based on a single Business pattern.

• Composite patterns that represent commonly occurring combinations of Business patterns

and Integration patterns.

• Application patterns that provide a conceptual layout describing how the application

components and data within a Business pattern or Integration pattern interact.

• Runtime patterns that define the logical middleware structure supporting an Application

pattern. Runtime patterns depict the major middleware nodes, their roles, and the interfaces

between these nodes.

• Product mappings that identify proven and tested software implementations for each

Runtime pattern.

• Best-practice guidelines for design, development, deployment, and management of e-

business applications.”

M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte, P. Krogdahl, M. Luo, T. Newling: Patterns:

Service-Oriented Architecture and Web Services, 2004

T.Kubik: ISM

The Patterns for e-business layered

asset model

T.Kubik: ISM

Business patterns

T.Kubik: ISM

Business Patterns Description Examples

Self-Service

(User-to-Business)

Applications where users

interact with a business via the

Internet or intranet

Simple Web site applications

Information Aggregation

(User-to-Data)

Applications where users can

extract useful information from

large volumes of data, text,

images, etc.

Business intelligence,

knowledge management, Web

crawlers

Collaboration

(User-to-User)

Applications where the

Internet supports collaborative

work between users

E-mail, community, chat, video

conferencing, etc.

Extended Enterprise

(Business-to-Business)

Applications that link two or

more business processes

across separate enterprises

EDI, supply chain

management, etc.

Integration patterns

T.Kubik: ISM

Integration Patterns Description Examples

Access Integration Integration of a number of

services through a common

entry point

Portals

Application Integration Integration of multiple

applications and data

sources without the user

directly invoking them

Message brokers,

workflow managers

Custom design

T.Kubik: ISM

Composite patterns

T.Kubik: ISM

Composite Patterns Description Examples

Electronic Commerce User-to-Online-Buying www.macys.com www.amazon.com

Portal Typically designed to aggregate multiple

information sources and applications to provide

uniform, seamless, and personalized access for

its users.

Enterprise Intranet portal providing self-service

functions such as payroll, benefits, and travel

expenses.

Collaboration providers who provide services such

as e-mail or instant messaging.

Account Access Provide customers with around-the-clock account

access to their account information.

Online brokerage trading apps.

Telephone company account manager functions.

Bank, credit card and insurance company online

apps.

Trading Exchange Allows buyers and sellers to trade goods and

services on a public site.

Buyer's side – interaction between buyer's

procurement system and commerce functions of

e-Marketplace.

Seller's side – interaction between the

procurement functions of the e-Marketplace and

its suppliers.

Sell-Side Hub

(Supplier)

The seller owns the e-Marketplace and uses it as

a vehicle to sell goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub

(Purchaser)

The buyer of the goods owns the e-Marketplace

and uses it as a vehicle to leverage the buying or

procurement budget in soliciting the best deals

for goods and services from prospective sellers

across the Web.

www.wre.org

(WorldWide Retail Exchange)

Application patterns

T.Kubik: ISM

Self-Service::Decomposition

Self-Service::Directly Integrated Single Channel

URI

Uniform Resource Identifier is a global, rigid resource identifier of the form:

scheme ":" hier_part ["?" query] [# fragment]

scheme – string (a letter followed by letters, digits, and ["+"|"."|"-"])

hier_part – has the following syntax:

[userInfo "@"] hostname [:port_number] [path]

query – optional information, commonly organized as a sequence of:
<key>=<value> pairs, separated by ";" or "&"

fragment – optional part (local reference)

HTTP URL conforms to the syntax of a generic URI:

scheme:[//[user[:password]@]host[:port]][/path][?query][#fragment
]

Example:

http://example.org/users?name=Adam

T.Kubik: ISM

URI, URL, URIRef

• The syntax of URI has been defined in [RFC2396] and updated in
[RFC2732]

• The current generic URI syntax specification is [RFC3986]

• Uniform Resource Locators were defined in [RFC1738]

• URI can be absolute or relative:
– absolute : a resource is identified with full and context independent

resource reference

– eelative : a reference has not given full information to identify a resource
and missing information must be derived from the context

• A URIRef is relative form of URI
– consists of URI and optional fragment preceded by #

– absolute URI of #section2 from the document
http://www.example.org/index.html is
http://www.example.org/index.html#section2

T.Kubik: ISM

IRI

• Internationalized Resource Identifier is a complement to URI

• provides wider repertoire of characters allowed
– Unicode/ISO10646 characters beyond U+007F

– private characters of that set can occur only in query parts

• Standardized in [RFC3987] that defines "internationalized"
versions corresponding to other constructs from [RFC3986],
such as URI references.

• In many cases URI and IRI are used interchangeably, but
practical replacement of URIs (or URI references) by IRIs (or
IRI references) depends on the application.

T.Kubik: ISM

HTTP - Hypertext Transfer Protocol

• HTTP methods
– HTTP/1.0

• GET, HEAD, POST,

– HTTP/1.1
• GET, HEAD, POST, PUT, DELETE, TRACE, OPTIONS, CONNECT, PATCH

• GET - method used probably most often
– URI with attributes: (http://books.example.com/books/12345)

GET /books/12345 HTTP/1.1

Host: books.example.com

– URI with method and attributes:
http://books.example.com/service?method=lookupBook&id=12334
5

GET/service?method=lookupBook&id=12345 HTTP/1.1

Host: books.example.com

T.Kubik: ISM

https://tools.ietf.org/html/rfc2068

https://tools.ietf.org/html/rfc2616https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

HTTP/1.1 200 OK

Server: GWS/2.0

Date: Tue, 21 May 2002 12:34:56 GMT

Transfer-Encoding: chunked

Content-Encoding: gzip

Content-Type: text/html

Cache-control: private

Set-Cookie: PREF=ID=58c005a7065c0996:TM=1021283456:LM=1021283456:S=OLJcXi3RhSE;

domain=.google.com; path=/; expires=Sun, 17-Jan-2038 19:14:07 GMT

(Web content compressed with gzip)

HTTP GET

T.Kubik: ISM

GET /search?hl=en&q=HTTP&btnG=Google+Search HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 Galeon/1.2.0 (X11; Linux i686; U;) Gecko/20020326

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

Accept-Language: en

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive Client

response

request

Server

HTTP protocol – GET request

T.Kubik: ISM

GET /request=WMS HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-shock

wave-flash, application/vnd.ms-excel, application/vnd.ms-powerpoint, application

/msword, */*

Accept-Language: pl

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1

.4322)

Host: localhost:3541

Connection: Keep-Alive

• request method

• HTTP headers
– general headers (appears in requests and responses)

– request headers (specific to the request)

– entity headers (present, if there is a content)

• content

HTTP protocol – POST request

T.Kubik: ISM

• request method

• HTTP headers
– general headers (appears in requests and responses)

– request headers (specific to the request)

– entity headers (present, if there is a content)

• content

POST /search HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 Galeon/1.2.5 (X11; Linux i686; U;) Gecko/20020606

Accept: text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,

text/plain;q=0.8,video/x-mng,image/png,image/jpeg,image/gif;q=0.2,

text/css,*/*;q=0.1

Accept-Language: en

Accept-Encoding: gzip, deflate, compress;q=0.9

Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66

Keep-Alive: 300

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded

Content-Length: 31

hl=en&q=HTTP&btnG=Google+Search

HTTP protocol – response

• status line (HTTP version, status code, short description)

• HTTP headers
– general headers (appears in requests and responses)

– response headers (specific to the response)

– entity headers (present, if there is a content)

• content

HTTP/1.1 302 Object moved

Server: Microsoft-IIS/5.1

Date: Thu, 23 Aug 2007 17:48:48 GMT

X-Powered-By: ASP.NET

Location: localstart.asp

Content-Length: 121

Content-Type: text/html

Set-Cookie: ASPSESSIONIDACQBQQQS=CEGLAHJCPAEBAIINILNPHKAF; path=/

Cache-control: private

<head><title>Object moved</title></head>

<body><h1>Object Moved</h1>This object may be found here.</body>

HTTP status codes

• 1xx (Informational): The request was received, continuing process

• 2xx (Successful): The request was successfully received,

understood, and accepted

• 3xx (Redirection): Further action needs to be taken in order to

complete the request

• 4xx (Client Error): The request contains bad syntax or cannot be

fulfilled

• 5xx (Server Error): The server failed to fulfill an apparently valid

request

T.Kubik: ISM

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Introduction to REST

REST (Representational State Transfer)
• an architectural pattern for developing web services

• REST web services communicate over the HTTP specification, using
HTTP vocabulary:

– HTTP methods (GET, PUT, POST, DELETE …)

– HTTP URI syntax (paths, parameters, etc.)

– Media types (xml, json, html, plain text, etc)

– HTTP Response codes

Author

• Roy Fielding: Architectural Styles and the Design of Network-
based Software Architectures, PhD Thesis, 2000.

T.Kubik: ISM

Introduction to REST

• Main characteristics
– Representational

• Clients possess the information necessary to identify, modify, and/or delete a web
resource.

– State
• All resource state information is stored on the client.

– Transfer
• Client state is passed from the client to the service through HTTP.

• Services that do not conform constraints mentioned below are
not strictly RESTful web services.
– Uniform interface

– Decoupled client-server interaction

– Stateless

– Cacheable

– Layered

– Extensible through code on demand (optional)

T.Kubik: ISM

Swagger

• Swagger
– the world’s largest framework of API developer tools for the

OpenAPI Specification(OAS), enabling development across
the entire API lifecycle, from design and documentation, to
test and deployment

• Swagger editor:
– an open source editor fully dedicated to Swagger-based APIs

– may be used to design, describe, and document your API

– great for quickly getting started with the Swagger
specification

– clean, efficient, and armed with a number of features to help
you design and document your RESTful interfaces, straight
out of the box

T.Kubik: ISM

https://swagger.io/

https://swagger.io/swagger-editor/

Swagger

• Swagger codegen:
– an open source code-generator to build server stubs and client

SDKs directly from a Swagger defined RESTful API with source
code available from:
• https://github.com/swagger-api/swagger-codegen

– can be downloaded
• git clone https://github.com/swagger-api/swagger-codegen

– and run as the executable .jar to generate code
• cd swagger-codegen
• java -jar modules/swagger-codegen-cli/target/swagger-
codegen-cli.jar generate -i <path of your Swagger
specification> -l <language>

– in particular suitable for spring
• java -jar swagger-codegen-cli-2.2.1.jar generate -i
http://petstore.swagger.io/v2/swagger.json -l spring -o
samples/server/petstore/springboot

T.Kubik: ISM

https://swagger.io/docs/open-source-tools/swagger-codegen/

https://github.com/swagger-api/swagger-codegen/wiki/Server-stub-generator-HOWTO#java-springboot

LittleApp example

T.Kubik: ISM

Resources

T.Kubik: ISM

https://www.journaldev.com/1827/java-design-patterns-example-tutorial

https://dzone.com/articles/gof-design-patterns-using-java-part-1

http://www.fluffycat.com/Java-Design-Patterns/

https://sourcemaking.com/design_patterns

https://www.avajava.com/tutorials/categories/design-patterns

https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm

http://www.blackwasp.co.uk/GofPatterns.aspx

