
Information systems modeling

Tomasz Kubik

Examples of GoF Design Patterns

in Java's core libraries
Creational patterns

Singleton
(recognizeable by creational methods returning the same instance (usually of itself) everytime)
java.lang.Runtime#getRuntime()
java.awt.Desktop#getDesktop()
java.lang.System#getSecurityManager()

Prototype
(recognizeable by creational methods returning a different instance of itself with the same properties)
java.lang.Object#clone() (the class has to implement java.lang.Cloneable)

Abstract factory

(recognizeable by creational methods returning the factory itself which in turn can be used to create another
abstract/interface type)

• javax.xml.parsers.DocumentBuilderFactory#newInstance()

• javax.xml.transform.TransformerFactory#newInstance()

• javax.xml.xpath.XPathFactory#newInstance()

Factory method
(recognizeable by creational methods returning an implementation of an abstract/interface type)
• java.util.Calendar#getInstance()
• java.util.ResourceBundle#getBundle()
• java.text.NumberFormat#getInstance()
• java.nio.charset.Charset#forName()
• java.net.URLStreamHandlerFactory#createURLStreamHandler(String) (Returns

singleton object per protocol)
• java.util.EnumSet#of()
• javax.xml.bind.JAXBContext#createMarshaller() and other similar methods

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Creational patterns

Bridge

(recognizeable by creational methods taking an instance of different abstract/interface type and returning an implementation of

own abstract/interface type which delegates/uses the given instance)

• None comes to mind yet. A fictive example would be new LinkedHashMap(LinkedHashSet<K>, List<V>) which

returns an unmodifiable linked map which doesn't clone the items, but uses them. The
java.util.Collections#newSetFromMap() and singletonXXX() methods however comes close.

Composite

(recognizeable by behavioral methods taking an instance of same abstract/interface type into a tree structure)

• java.awt.Container#add(Component) (practically all over Swing thus)

• javax.faces.component.UIComponent#getChildren() (practically all over JSF UI thus)

Builder

(recognizeable by creational methods returning the instance itself)

• java.lang.StringBuilder#append() (unsynchronized)

• java.lang.StringBuffer#append() (synchronized)

• java.nio.ByteBuffer#put() (also on CharBuffer, ShortBuffer, IntBuffer, LongBuffer,

FloatBuffer and DoubleBuffer)

• javax.swing.GroupLayout.Group#addComponent()

• All implementations of java.lang.Appendable

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Creational patterns

Decorator

(recognizeable by creational methods taking an instance of same abstract/interface type which adds

additional behaviour)

• All subclasses of java.io.InputStream, OutputStream, Reader and Writer have a constructor

taking an instance of same type.

• java.util.Collections, the checkedXXX(), synchronizedXXX() and unmodifiableXXX()

methods.

• javax.servlet.http.HttpServletRequestWrapper and HttpServletResponseWrapper

Facade

(recognizeable by behavioral methods which internally uses instances of different independent

abstract/interface types)

• javax.faces.context.FacesContext, it internally uses among others the abstract/interface types

LifeCycle, ViewHandler, NavigationHandler and many more without that the enduser has to

worry about it (which are however overrideable by injection).

• javax.faces.context.ExternalContext, which internally uses ServletContext,

HttpSession, HttpServletRequest, HttpServletResponse, etc.

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Creational patterns

Adapter

(recognizeable by creational methods taking an instance of different abstract/interface type and returning an implementation of

own/another abstract/interface type which decorates/overrides the given instance)

• java.util.Arrays#asList()

• java.util.Collections#list()

• java.util.Collections#enumeration()

• java.io.InputStreamReader(InputStream) (returns a Reader)

• java.io.OutputStreamWriter(OutputStream) (returns a Writer)

• javax.xml.bind.annotation.adapters.XmlAdapter#marshal() and #unmarshal()

Flyweight

(recognizeable by creational methods returning a cached instance, a bit the "multiton" idea)

• java.lang.Integer#valueOf(int) (also on Boolean, Byte, Character, Short, Long and BigDecimal)

Proxy

(recognizeable by creational methods which returns an implementation of given abstract/interface type which in turn

delegates/uses a different implementation of given abstract/interface type)

• java.lang.reflect.Proxy

• java.rmi.*

• javax.ejb.EJB (explanation https://stackoverflow.com/questions/25514361/when-using-ejb-does-each-managed-bean-get-its-own-

ejb-instance)

• javax.inject.Inject (explanation https://stackoverflow.com/questions/29651008/field-getobj-returns-all-nulls-on-injected-cdi-

managed-beans-while-manually-i/29672591#29672591)

• javax.persistence.PersistenceContext

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Behavioral patterns

Chain of responsibility

(recognizeable by behavioral methods which (indirectly) invokes the same method in another implementation of same

abstract/interface type in a queue)

• java.util.logging.Logger#log()

• javax.servlet.Filter#doFilter()

Command

(recognizeable by behavioral methods in an abstract/interface type which invokes a method in an implementation of a different

abstract/interface type which has been encapsulated by the command implementation during its creation)

• All implementations of java.lang.Runnable

• All implementations of javax.swing.Action

Interpreter

(recognizeable by behavioral methods returning a structurally different instance/type of the given instance/type; note that

parsing/formatting is not part of the pattern, determining the pattern and how to apply it is)

• java.util.Pattern

• java.text.Normalizer

• All subclasses of java.text.Format

• All subclasses of javax.el.ELResolver

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Behavioral patterns

Iterator

(recognizeable by behavioral methods sequentially returning instances of a different type from a queue)

• All implementations of java.util.Iterator (thus among others also java.util.Scanner!).

• All implementations of java.util.Enumeration

Mediator

(recognizeable by behavioral methods taking an instance of different abstract/interface type (usually using the command pattern)

which delegates/uses the given instance)

• java.util.Timer (all scheduleXXX() methods)

• java.util.concurrent.Executor#execute()

• java.util.concurrent.ExecutorService (the invokeXXX() and submit() methods)

• java.util.concurrent.ScheduledExecutorService (all scheduleXXX() methods)

• java.lang.reflect.Method#invoke()

Memento

(recognizeable by behavioral methods which internally changes the state of the whole instance)

• java.util.Date (the setter methods do that, Date is internally represented by a long value)

• All implementations of java.io.Serializable

• All implementations of javax.faces.component.StateHolder

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Behavioral patterns

Observer (or Publish/Subscribe)

(recognizeable by behavioral methods which invokes a method on an instance of another abstract/interface type, depending on

own state)

• java.util.Observer/java.util.Observable (rarely used in real world though)

• All implementations of java.util.EventListener (practically all over Swing thus)

• javax.servlet.http.HttpSessionBindingListener

• javax.servlet.http.HttpSessionAttributeListener

• javax.faces.event.PhaseListener

State

(recognizeable by behavioral methods which changes its behaviour depending on the instance's state which can be controlled

externally)

• javax.faces.lifecycle.LifeCycle#execute() (controlled by FacesServlet, the behaviour is dependent on

current phase (state) of JSF lifecycle)

Strategy

(recognizeable by behavioral methods in an abstract/interface type which invokes a method in an implementation of a different

abstract/interface type which has been passed-in as method argument into the strategy implementation)

• java.util.Comparator#compare(), executed by among others Collections#sort().

• javax.servlet.http.HttpServlet, the service() and all doXXX() methods take HttpServletRequest and

HttpServletResponse and the implementor has to process them (and not to get hold of them as instance variables!).

• javax.servlet.Filter#doFilter()

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

Examples of GoF Design Patterns

in Java's core libraries
Behavioral patterns

Template method

(recognizeable by behavioral methods which already have a "default" behaviour definied by an abstract type)

• All non-abstract methods of java.io.InputStream, java.io.OutputStream, java.io.Reader and

java.io.Writer.

• All non-abstract methods of java.util.AbstractList, java.util.AbstractSet and java.util.AbstractMap.

• javax.servlet.http.HttpServlet, all the doXXX() methods by default sends a HTTP 405 "Method Not

Allowed" error to the response. You're free to implement none or any of them.

Visitor

(recognizeable by two different abstract/interface types which has methods definied which takes each the other abstract/interface

type; the one actually calls the method of the other and the other executes the desired strategy on it)

• javax.lang.model.element.AnnotationValue and AnnotationValueVisitor

• javax.lang.model.element.Element and ElementVisitor

• javax.lang.model.type.TypeMirror and TypeVisitor

• java.nio.file.FileVisitor and SimpleFileVisitor

• javax.faces.component.visit.VisitContext and VisitCallback

T.Kubik: ISM

https://stackoverflow.com/questions/1673841/examples-of-gof-design-patterns-in-javas-core-libraries/2707195

AntiPatterns

• like their design pattern counterparts, define an industry vocabulary for

the common defective processes and implementations within

organizations

– (see: https://sourcemaking.com/antipatterns)

• are practices that appear very easy to follow, but have bad side effects

in reality

• some of bad code may not look so obviously bad to beginners

– (see: https://www.odi.ch/prog/design/newbies.php)

T.Kubik: ISM

Bad Good
String s = "";

for (Person p : persons) {

s += ", " + p.getName();

}

//remove first comma

s = s.substring(2);

StringBuilder sb = new

// well estimated buffer

StringBuilder(persons.size() * 16);

for (Person p : persons) {

// the JIT optimizes the if away out of the loop (peeling)

if (sb.length() > 0) sb.append(", ");

sb.append(p.getName);

}

Rational Software Architect Designer:

Software Analyzer

T.Kubik: ISM

Source code for GoF patterns implementation: https://github.com/csparpa/gof-design-patterns/tree/master/java

• This tool can recognize design patterns used by the programmer but
also deliver some statistics and results of code review
– (see: https://www.ibm.com/developerworks/rational/library/08/0429_gutz1/)

Java custom annotations

• introduced in jdk1.5

• many frameworks are based on them

• have no representation in UML !!!

T.Kubik: ISM

@Retention

RetentionPolicy.RUNTIME

RetentionPolicy.CLASS

RetentionPolicy.SOURCE

@Target

ElementType.ANNOTATION_TYPE

ElementType.CONSTRUCTOR

ElementType.FIELD

ElementType.LOCAL_VARIABLE

ElementType.METHOD

ElementType.PACKAGE

ElementType.PARAMETER

ElementType.TYPE

@Inherited

@Documented

http://tutorials.jenkov.com/java/annotations.html

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

import

java.lang.annotation.RetentionPolicy;

import java.lang.annotation.ElementType;

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface MyAn {

public String name();

public String value();

}

Java custom annotation use

• often used trough reflection API

• this might make some troubles when working with modules (from jdk9)

• therefore jdk1.8 is still alive (!)

T.Kubik: ISM

import java.lang.annotation.Annotation;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.ElementType;

@MyAn(name="someName", value = "someValue")
public class MyClass {

MyClass(){
Class aClass = MyClass.class;
Annotation[] annotations = aClass.getAnnotations();
for(Annotation annotation : annotations){

if(annotation instanceof MyAn){
MyAn myAn = (MyAn) annotation;
System.out.println("name: " + myAn.name());
System.out.println("value: " + myAn.value());

}
}

}
}

Spring framework

T.Kubik: ISM

https://docs.spring.io/spring/docs/4.0.x/spring-framework-reference/html/overview.htmlhttps://spring.io/guides

• consists of features
– core technologies: dependency injection, events,

resources, i18n, validation, data binding, type conversion,
SpEL, AOP

– testing: mock objects, TestContext framework, Spring
MVC Test, WebTestClient

– data access: transactions, DAO support, JDBC, ORM,
Marshalling XML

– web servlet: Spring MVC, WebSocket, SockJS, STOMP
Messaging

– web reactive: Spring WebFlux, WebClient, WebSocket

– integration: remoting, JMS, JCA, JMX, email, tasks,
scheduling, cache

– languages: Kotlin, Groovy, dynamic languages

organized into various modules, grouped into:
– Core Container, Data Access/Integration, Web, AOP

(Aspect Oriented Programming), Aspects,
Instrumentation, Messaging, and Test

• provides a comprehensive programming and
configuration model for modern Java-based enterprise
applications

• its key element is infrastructural support at the
application level:

– it focuses on the "plumbing" of enterprise applications so
that teams can focus on application-level business logic,
without unnecessary ties to specific deployment
environments

https://docs.spring.io/spring/docs/

current version: 5.2.4

Spring vs Spring Boot

• Spring
– an application development framework simplify the Java EE development

– provides comprehensive infrastructure support for developing Java
applications

• Spring Boot
– an extension of the Spring framework that eliminates the boilerplate

configurations required for setting up a Spring application.

T.Kubik: ISM

Spring Spring Boot

Configuration

A developer have to set up Hibernate data source,

Entity Manager, Session Factory, Transaction

Management etc. manually

A developer doesn’t need to define everything individually,

SpringBootConfiguration annotation is enough to

manage everything at the time of deployment.

XML
In Spring MVC application some of the XML

definition are mandatory to manage

Configuring Spring Boot Application can be done

by the use of Java annotations

Controlling

As configuration can be easily manually handled, so

Spring or Spring MVC can manage not load some of

the unwanted default features for that specific

application

In case of Spring Boot loading part is done automatically

and by default, so the developer don’t care about

potentially not loading specific unusable spring default

features

Use
Better to use if application type or characteristics are

purely defined

Better to use when all the futures of application are not

properly defined as integrating any Spring specific feature

will be auto-configured

https://www.educba.com/spring-vs-spring-boot/

Spring vs Spring Boot

T.Kubik: ISM

• Convention over Configuration

It’s a software design paradigm used by many software frameworks/systems that provides sensible defaults to its user

obviously by following the best practices and without losing flexibility.

• The idea is that system/framework would provide sensible defaults for their users [by convention] and if one

deviates/departs from the these defaults then only one needs to make any configuration changes.

• Rapid Application Development

Maximize the code that actually adds the value or is related to the domain while reducing the boilerplate code.

• The idea is to reuse such features as serialization to/from XML or JSON because these have no direct values for

customer nor developer.

• Example 1: (Deployment Simplified)

Creating a web application following Spring MVC the user will need to set up a container like Tomcat to deploy it. But

such container can be delivered by the framework, so wasting time & effort on installation and configuring of container

instance vanishes. And the framework can also be flexible to cat of such kind of support.

Work For You : Look out for the dependent jars of spring-boot-starter-web artifactId

<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-

web</artifactId></dependency>

• Example 2: (Dependency Management Simplified)

Developing enterprise application using Spring Framework (traditional way) causes a headache while finding right jars,

right versions of jars, upgrading the version of jars etc. But all dependent jars along with their transitive dependencies

can be delivered out of the box by simple selection of predefined sets (web or security or jpa etc.)

Work For You: Check out Spring Boot Starter Packs like spring-boot-starter-web, spring-boot-starter-actuator etc

https://www.quora.com/What-is-the-difference-between-Spring-Boot-and-the-Spring-framework

Spring Tool Suite™

T.Kubik: ISM

• customized all-in-one
Eclipse based
distribution that makes
application
development easy

• provide ready-to-use
combinations of
language support,
framework support,
and runtime support,
and combine them with
the existing Java, Web
and Java EE tooling
from Eclipse

https://spring.io/tools

The assisting examples were implemented using STS (!!!)

Spring IoC (Inversion of Control)

• Inversion of Control

– most often used in the context of object-oriented programming

– relates to principle where the control of objects or portions of a

program is transferred to a container or framework

– can be achieved through various mechanisms such as: Strategy

design pattern, Service Locator pattern, Factory pattern, and

Dependency Injection (DI)

– in this approach frameworks use abstractions with additional behavior

built in (to add behaviors one need to extend the classes of the

framework or plugin custom classes)

T.Kubik: ISM

https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring

Spring container

• the core of the Spring Framework

• creates the objects, wire them together, configure
them, and manage their complete life cycle from
creation till destruction

• the objects created from this process are called
Spring beans

• uses DI (dependency injection) to manage the
components that make up an application

• DI can be done through constructors, setters or
fields

• configuration metadata are supplied in
– XML format or

– Java annotations or

– Java code.

T.Kubik: ISM

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#spring-core

DI example

T.Kubik: ISM

see: https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring

.

// traditional way - initialize field inside constructor

public class Store {

private Item item;

public Store() {

item = new ItemImpl1();

}

}

//DI way - let initialization to be done elsewhere, see next

public class Store {

private Item item;

public Store(Item item) {

this.item = item;

}

}

DI example

T.Kubik: ISM

.

// instantiate a container

ApplicationContext context

= new ClassPathXmlApplicationContext("applicationContext.xml");

// constructor-based DI

@Configuration

public class AppConfig {

@Bean

public Item item1() {

return new ItemImpl1();

}

@Bean

public Store store() {

return new Store(item1());

}

}

// setter-based DI

@Bean

public Store store() {

Store store = new Store();

store.setItem(item1());

return store;

}

// field-based DI

public class Store {

@Autowired

private Item item;

}

see: https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring

DI example

• Please study sources inside simple-bean

project (jdk1.8)
– http://tomasz.kubik.staff.iiar.pwr.wroc.pl/dydaktyka/InformationSy

stemsModeling/2019/simple-beans.zip

T.Kubik: ISM

Bean life cycle

Bean construction

1. The container finds the bean’s definition and instantiates the bean.

2. Using dependency injection, Spring populates all of the properties as specified in
the bean definition.

3. If the bean implements the BeanNameAware interface, the factory calls
setBeanName() passing the bean’s ID.

4. If the bean implements the BeanFactoryAware interface, the factory calls
setBeanFactory(), passing an instance of itself.

5. If there are any BeanPostProcessors associated with the bean, their
postProcessBeforeInitialization() methods will be invoked.

6. If an init-method is specified for the bean, it will be called.

7. Finally, if there are any BeanPostProcessors associated with the bean, their
postProcessAfterInitialization() methods will be invoked.

Bean destruction

1. If the bean implements the DisposableBean interface, the destroy() method
is called.

2. If a custom destroy() method is specified, it will be invoked.

T.Kubik: ISM

Context

• Spring comes with several flavors of application context. Here are a few

that you’ll most likely encounter:

– AnnotationConfigApplicationContext

• Loads a Spring application context from one or more Java-based configuration

classes

– AnnotationConfigWebApplicationContext

• Loads a Spring web application context from one or more Java-based

configuration classes

– ClassPathXmlApplicationContext

• Loads a context definition from one or more XML files located in the classpath,

treating context-definition files as classpath resources

– FileSystemXmlApplicationContext

• Loads a context definition from one or more XML files in the filesystem

– XmlWebApplicationContext

• Loads context definitions from one or more XML files contained in a web

application

T.Kubik: ISM

Bean lifecycle

T.Kubik: ISM

CRAIG WALLS, RYAN BREIDENBACH: Spring in Action, MANNING, 2005

Spring design patterns

• Dependency injection/ or IOC (inversion of control)
– the main principle behind decoupling process.

• Factory
– Spring uses factory pattern to create objects of beans using ApplicationContext reference.

• Proxy
– used heavily in AOP & remoting.

• Singleton
– By default all beans are singletons. Therefore no matter how many calls will be made using getBean()

method, the object received will be created only once. This can be overridden by changing the bean scope
to Prototype. Then a new bean will be created for every request.

• Model View Controller
– The advantage with Spring MVC is that your controllers are POJOs as opposed to being servlets. This

makes for easier testing of controllers.

– The controller is only required to return a logical view name, and the view selection is left to a separate
View-Resolver. This makes it easier to reuse controllers for different view technologies.

• Front Controller
– Spring provides Dispatcher-Servlet to ensure an incoming request gets dispatched to your controllers.

• View Helper
– Spring has several custom JSP tags, and velocity macros, to assist in separating code from presentation

in views.

• Template method
– used extensively to deal with boilerplate repeated code (such as closing connections cleanly, etc.). For

example JdbcTemplate, JmsTemplate, JpaTemplate.

T.Kubik: ISM

http://www.javapathshala.com/architectures/design-patterns/springdesignpatterns/

Spring annotation

Core Spring Framework Annotations

• @Required

– applied on bean setter methods and indicates that the affected bean must be populated at configuration time with the

required property Otherwise an exception of type BeanInitializationException is thrown.

• @Autowired

– applied on fields, setter methods, and constructors; injects object dependency implicitly.

• @Qualifier

– used along with @Autowired annotation and offer more control of the dependency injection process; can be specified

on individual constructor arguments or method parameters; used to avoid confusion which occurs when more than

one bean of the same type was created and only of them should be wired with a property.

• @Configuration

– used on classes which define beans; classes will have methods annotated with @Bean to instantiate and configure

dependencies

• @ComponentScan

– used with @Configuration annotation to allow Spring to know the packages to scan for annotated components

• @Bean

– used at the method level; works with @Configuration to create Spring beans; the method annotated works as bean

ID and it creates and returns the actual bean.

• @Lazy

– used on component classes to declare lazy initialization of bean (by default all autowired dependencies are created

and configured at startup)

• @Value

– used at the field, constructor parameter, and method parameter level; indicates a default value expression for the

field or parameter to initialize the property with

T.Kubik: ISM

https://springframework.guru/spring-framework-annotations/

.

Spring annotation

Spring Framework Stereotype Annotations

• @Controller

– used on classes to indicate their role as controllers; the proper classpath and auto-registering bean definitions

for them marks the Java class as a bean or say component so that the component-scanning mechanism of

Spring can add into the application context

• @Controller

– used to indicate the class is a Spring controller; can be used to identify controllers for Spring MVC or Spring

WebFlux

• @Service

– used on a class that performs some service, such as execute business logic, perform calculations and call

external APIs.

• @Repository

– used on Java classes which directly access the database

– works as marker for any class that fulfills the role of repository or Data Access Object.

Spring Boot Annotations

• @EnableAutoConfiguration

– usually placed on the main application class.

– implicitly defines a base “search package” and tells Spring Boot to start adding beans based on classpath

settings, other beans, and various property settings.

• @SpringBootApplication

– used on the application class while setting up a Spring Boot project

– annotated class must be kept in the base package (it will scan only its sub-packages)

– adds all the following:
• @Configuration, @EnableAutoConfiguration, @ComponentScan

T.Kubik: ISM

.

https://springframework.guru/spring-framework-annotations/

