
Information systems modeling

Tomasz Kubik



The Open Group SOA Source Book 

T.Kubik: ISM 

• Collection of source material for use by Enterprise Architects 
working with Service-Oriented Architecture.

http://www.opengroup.org/soa/source-book/intro/index.htm



Layers of the SOA reference 

architecture: Solution stack view

T.Kubik: ISM 

https://www.ibm.com/developerworks/library/ar-archtemp/index.html



Enterprise architecture

• Service Oriented 
Architecture encompasses 
the architectural paradigms 
for designing applications in 
a Service centric way with 
a strong emphasis on 
services composition 
(orchestration) and 
governance.

• Following the SOA paradigm 
in Enterprise environment is 
possible only with wide 
adoption of its principles 
both at design, 
development, deployment 
and integration layers.

T.Kubik: ISM 

https://www.intropro.com/solutions/enterprise-architecture



Microservices architecture

T.Kubik: ISM 

• consists of a collection of small, autonomous services. 

• each service is self-contained and should implement a single 
business capability. 

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

Remote

Service

Client

CDN

Service

Service

Service

Service

Microservices

Management
Service

Discovery

API

Gateway

Static

Content

Identity

Provider



Service compositions

• Orchestration (executable BPEL): 
– there is one particular element used by the 

composition that oversees and directs the other 
elements.

– refers to the coordination of a single 
participant's process from a local, subjective 
level

• Choreography
– the elements used by the composition interact 

in a non-directed fashion, yet with each 
autonomous member knowing and following a 
predefined pattern of behavior for the entire 
composition.

– refers to the collaboration of multiple 
participants from a global view

– it serves as a contract between parties that 
clarifies all details of their collaboration 

• Collaboration
– the elements used by the composition interact 

in a non-directed fashion, each according to 
their own plans and purposes without a 
predefined pattern of behavior. 

T.Kubik: ISM 

Choreography = Multi-party Collaboration

Orchestration = Executable Process



Orchestration

• All about coordination of web services within a single process 
from a local, subjective perspective

• Definition of a new service from existing services from 
controller perspective

• Model including
– communication actions

• externally visible message exchanges 

• internally visible message exchanges

– internal actions
• processing inside service 

• recording externally and internally visible states

• Can be expressed using an execution language, such as 
BPEL

Orchestration = Executable Process



Choreography

• Global coordination of several services 
– it focuses on how to build stateful, conversational, long-running 

processes out of basic stateless, atomic web services operations 

– it concerns collaboration of two or more participants aimed at 
achieving a common goal

• specifies jointly agreed, information driven reactive rules

• sets control-flow dependencies, data-flow dependencies, transactional 
dependencies, message correlations, time constraints.

• It does not describe any internal action that occurs within a 
participants

• It is not an executable process. 
– It serves rather as a contract between parties that clarifies all details 

of their collaboration 

Choreography = Multi-party Collaboration



Orchestration vs Choreography

T.Kubik: ISM 

https://jcastellssala.com/tag/choreography/



Timeline of BPM languages



generated based on http://sourceforge.net/apps/trac/pi4soa/wiki/examples

Example of BPM



Scenario 1

Scenario 2

UML sequence diagrams



Integration

• enables the loose coupling between the request 
and the concrete provider by matching the Service 
Request and Service Implementation. 

• this is not only a technical loose coupling 
addressing protocols, binding, locations or 
platforms, but can also a business semantic loose 
coupling performing required adaptations between 
service requester and provider.

T.Kubik: ISM 



Integration Layer

• Provides a level of indirection between the consumer of functionality and its 
provider 

• Consumers and providers are decoupled (it allows integration of disparate 
systems into new solutions). 

• A service consumer interacts with the service provider via the Integration Layer. 

• Each service interface is only exposed via the Integration Layer (e.g., ESB), 
never directly

• point-to-point integration is done at the Integration Layer instead of 
consumers/requestors doing it themselves. 

T.Kubik: ISM 

http://www.opengroup.org/soa/source-book/soa_refarch/p13.htm#figure40

http://www.opengroup.org/soa/source-book/intro/index.htm



Integration layer capabilities

• Communication, Service Interaction, and Integration: 
– ability to route requests to correct the provider after necessary message 

transformation and protocol conversion

– ability to connect the service requestor to the service provider and its 
underlying solutions platforms realizing the requested service. 

– ability to discover services and, at runtime, to support the virtualization of 
services so that changes to the end-points (or locations from where the 
services are called and where the services are provided) can occur without 
impact to service consumers and service providers. 

• Message Processing: 
– ability to perform the necessary message transformation to connect the 

service requestor to the service provider and to publish and subscribe 
messages and events asynchronously. 

• Quality of Service: 
– handling of transactions and exceptions and other NFRs (non-functional

requirements)

• Security: 
– helps in enforcement of access privileges and other security policies. 

• Management: 
– ability to maintain service invocation history and monitor and track the service 

invocations. 
T.Kubik: ISM 

https://msdn.microsoft.com/en-us/library/ff647962.aspx



Integration layer

• can be used to orchestrate the 
activities across multiple 
applications and to keep track 
of state. 

• is likely to require additional 
effort, but it manages all 
interactions from a central point 
without applications requiring 
information about each other

• Three approaches towards 
integrating layers:
– Entity Aggregation

– Process Integration

– Portal Integration

T.Kubik: ISM 

https://msdn.microsoft.com/en-us/library/ff647962.aspx



Data Warehouse architecture

T.Kubik: ISM 

• usually three layers: 

– Data Source Layer, 

– Integration Layer,

– Presentation Layer 

https://www.codeproject.com/Articles

/1241849/Designing-and-Implementing-

a-Data-Warehouse-in-the

https://www.tutorialspoint.com/sap_bods/dw_overview.htm



Integration Layer

Data integration

• ETL (Extract-Transform-Load) 
– in the Extract step, data is moved from the Source layer and 

made accessible in the Integration layer for further 
processing,

– the Transformation step involves all the operational activities 
usually associated with the typical statistical production 
process,

– as soon as a variable is processed in the Integration layer in a 
way that makes it useful in the context of data warehouse it 
has to be Loaded into the Interpretation layer and the Access 
layer.

T.Kubik: ISM 

http://www.dataintegration.info/etl



20 Best ETL / Data Warehousing 

Tools in 2019 

• QuerySurge

• MarkLogic

• Panoply

• Oracle

• Amazon RedShift

• ….

T.Kubik: ISM 

https://www.guru99.com/top-20-etl-database-warehousing-tools.html



Presentation Layer - patterns

• Intercepting Filter
– Intercepts incoming requests and outgoing responses and applies a filter.

• Context Object
– Encapsulates state in a protocol-independent way to be shared throughout 

your application

• Front Controller
– A container to hold the common processing logic that occurs within the 

presentation tier

• Application Controller
– Centralizes control, retrieval, and invocation of view and command 

processing

• View Helper
– Encourages the separation of formatting-related code from other business 

logic

• Composite View
– suggests composing a View from numerous atomic pieces

• Dispatcher View
– defers business processing until view processing has been performed.

T.Kubik: ISM 

https://stackabuse.com/java-j2ee-design-patterns

https://www.oracle.com/java/technologies/intercepting-filter.html

http://www.corej2eepatterns.com/PatternRelationships.htm

https://stackabuse.com/java-j2ee-design-patterns


Business Layer - patterns

• Patterns
– Business Delegate

• reduces coupling between remote tiers and provides an entry point for accessing remote 
services in the business tier.

– Service Locator
• encapsulates the implementation mechanisms for looking up business service components.

– Session Façade
• provides coarse-grained services to the clients by hiding the complexities of the business 

service interactions.

– Application Service
• centralizes and aggregates behavior to provide a uniform service layer to the business tier 

services.

– Business Object
• implements your conceptual domain model using an object model.

– Composite Entity
• implements a Business Object using local entity beans and POJOs.

– Transfer Object
• provides the best techniques and strategies to exchange data across tiers

– T O Assembler
• constructs a composite Transfer Object from various sources

– Value List Handler
• uses the GoF iterator pattern to provide query execution and processing services

T.Kubik: ISM 

http://www.corej2eepatterns.com/PatternRelationships.htm



Integration Layer - patterns

• Patterns
– Data Access Object 

• enables loose coupling between the business and resource tiers

– Service Activator
• enables asynchronous processing in your enterprise applications 

using JMS.

– Domain Store
• provides a powerful mechanism to implement transparent 

persistence for your object model.

– Web Service Broker
• exposes and brokers one or more services in your application to 

external clients as a web service using XML and standard web 
protocols

T.Kubik: ISM 

http://www.corej2eepatterns.com/DataAccessObject.htm

http://www.corej2eepatterns.com/ServiceActivator.htm

http://www.corej2eepatterns.com/DomainStore.htm

http://www.corej2eepatterns.com/WebServiceBroker.htm

http://www.corej2eepatterns.com/WebServiceBroker.htm


Facade pattern

• adds an interface to existing system to hide its complexities 
(structural pattern)

• applies to the complex or poorly designed subsystems

T.Kubik: ISM 



Flyweight pattern

• reduces the number of objects created (structural pattern), 
decreases memory footprint, increases performance

• allows to reuse already existing objects by storing them and 
creating new objects only when no matching object is found

T.Kubik: ISM 



Service component as a facade

T.Kubik: ISM 

https://www.ibm.com/developerworks/library/ar-archtemp/index.html


