Information systems modeling

Tomasz Kubik

(@0

The Open Group SOA Source Book

http://www.opengroup.org/soa/source-book/intro/index.htm

« Collection of source material for use by Enterprise Architects
working with Service-Oriented Architecture.

THE O])E?Z(;R()L?P

Standards Certifications Events Consortia Software Publications About Us

Subject Areas Get Involved

The SOA
Source Book

SOA Source Book

Service-Oriented
Architecture

The Open Group Service
Integration Maturity
Model (OSIMM) Version 2

SOA Reference
Architecture

Service-Oriented Cloud
Computing
Infrastructure (SOCCI)
Framework

Using TOGAF to Define
and Govern Service-
Oriented Architectures

SOA Governance
Framework

Service-Oriented
Architecture Ontology

SOA Source Book

The Open Group SOA Source Book is a collection of source material for use by Enterprise Architects working with Service-Oriented
Architecture.

It consists of material that has been considered and in part developed by The Open Group SOA Work Group. The SOA Work Group
is engaged in a work program to produce definitions, analyses, recommendations, reference models, and standards to assist
business and information technelogy professionals within and outside of The Open Group to understand and adopt SOA.

The Source Book includes the final output of that work program, which is also published separately as a collection of Open Group
Standards and Guides, available from The Open Group online bookstore. It also includes interim material, reflecting the current state
of work that has not yet resulted in formal Standards and Guides. The content of this material will not necessarily be reflected in the
final output.

This is Edition 7 of the SOA Source Book. Edition 1, published by Vian Haren in April 2009, and also available on the web, contained
interim material only. Since it appeared, The Open Group has published five SOA Standards, two SOA Guides, and three SOA White
Papers. These have been included in successive editions of the Source Book as they appeared, replacing much of the original
interim material.

Two of the Open Group SOA standards — the SOA Reference Architecture and the SOA Ontology — were input to 1SO to assist with
the development of the International Standard SOA Reference Architecture, ISO/IEC 16384. The Open Group SOA Reference
Architecture is now superseded by ISO/IEC 16384:2016, and the reader is encouraged to use the SO Standard. The Open Group
S0A Reference Architecture is included in this edition of the Source Book for reference purposes.

Edition 7 contains:

* A description of Service-Oriented Architecture

Layers of the SOA reference
architecture: Solution stack view

Consumers layer

JSWNSUOD sdIABS

Business process layer

Composition; choreography;
7buslness state machines

Services layer
Atomic and composite

Jehe| aoueuwsnon)

20uabijjaiul SSaUISNg pUB Bjepejawl
Jake| 81ns)IydJe UCBULIO|

Operational layer

Japinoid aomes

https://www.ibm.com/developerworks/library/ar-archtemp/index.htmi

T.Kubik: ISM

Enterprise architecture

Governance Layer

« Service Oriented Presentation Layer
Architecture encompasses | Pota || FE Appications
the architectural paradigms
for designing applications in :
a Service centric way with | | somesieAees
a strong emphasis on EelsE mEE R
services composition ‘ ’ ' '
(orchestration) and
governance.

* Following the SOA paradigm
In Enterprise environment is
possible only with wide N2
adoption of its principles | adaper || ndapier || Adapler || Adopler |
both at design,

development, deployment

and integration layers.

Registry

Repository

Guidelines

Scalability

Reliability

Infrastructure Layer

Enterprise Resources

Data Bases File Stores Legacy Systems Partners

httis://www.introEro.com/solutions/enteririse-architecture

Microservices architecture

e consists of a collection of small, autonomous services.

« each service is self-contained and should implement a single
business capability.

Microservices

1

1

1

d 1
Identit: 1

iy X Service

Provider .
1

1

1

1

1

:

API ;
Gateway !
1

:

1

1

1

Remote
Service

Client Service

. Service

Static S
CDN ervice
Content Management |—| ncoovery

https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

T.Kubik: ISM

Service compositions

Orchestration (executable BPEL): R PR

— there is one particular element used by the [SQMCQBN
composition that oversees and directs the other Y G;f[>
elements. /\& o 4 \ J

— refers to the coordination of a single o EemRsite)
participant's process from a local, subjective L R S
level ~) AV

‘ " &'
« Choreography Service D A

— the elements used by the composition interact - --
in a non-directed fashion, yet with each Orchestration = Executable Process
autonomous member knowmg and following a
predefined pattern of behavior for the entire G S VU ca—
composition. seviceA| | services ‘

— refers to the collaboration of multiple J
participants from a global view n o

— it serves as a contract between parties that H H
clarifies all details of their collaboration i 1!

» Collaboration | — |
— the elements used by the composition interact service D .

in a non-directed fashion, each according to — —
their own plans and purposes without a
predefined pattern of behavior.

T.Kubik: ISM

Choreography = Multi-party Collaboration

Orchestration

All about coordination of web services within a single process
from a local, subjective perspective

Definition of a new service from existing services from
controller perspective

* Model including
— communication actions

» externally visible message exchanges
* internally visible message exchanges
— Internal actions

* processing inside service
» recording externally and internally visible states

« Can be expressed using an execution language, such as
BPEL

Orchestration = Executable Process

Choreography

. Global coordination of several services

— it focuses on how to build stateful, conversational, long-running
processes out of basic stateless, atomic web services operations

— It concerns collaboration of two or more participants aimed at
achieving a common goal

« specifies jointly agreed, information driven reactive rules

« sets control-flow dependencies, data-flow dependencies, transactional
dependencies, message correlations, time constraints.

|t does not describe any internal action that occurs within a
participants

 |tis not an executable process.

— It serves rather as a contract between parties that clarifies all details
of their collaboration

Choreography = Multi-party Collaboration

Orchestration vs Choreography

https://jcastellssala.com/tag/choreography/

T.Kubik: ISM

Timeline of BPM languages

I » I
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 : 2010
S ;
7 ARIS 5 » ARIS6 L IARIS 7 » ARIS 7.1 » ARIS uBPM >
8 EPK g EPK i EPK BPMN 1.0 (PBMIN 2.0)
8," Wf-XML 1.0 » WE-XML 2.0 - >
% WPDL 1.0 — > XPDL 1.0 » XPDL 2.0 i =XPDI\. 28— » XPDL 2.2
A y . A
» UML14 ——» UML 1.5 UML20 —» LjML 24 —-—> UML 2.2 :
2 O . =.I:3MM1.0—§—>BMI\;/I141
% O :S_BVR 10— SBVR 1.1
O fzad > OéM
Austausch .
bi-direktional CMPM
; T maglich H 3
v i : v
% BPMN 0.9 » BPMN 1.0 » BPMN 1.0 —— > BPMN 1.1—>BPMN 1.2—» BPMN 2.0
E DR =0 | BPEL4P I:."’ BPEL4P |
Aigeact : 8
@ Gu#g:rg?lveSTBngL m (<,() Whitepaepgf) = § 1_0e0p = =
A :
s8] e :
O | T e e :
(%)) _ebXML : >
7p] > BPSS 1.01 :
< " Austausch .
O “ uni-direktional .
méglich :
IBM IBM, MS, BEA :
- WSFL' = | BPEL4WS 1.0—+> BPELAWS 1.1 L 20 . »
Microsoft .
XLANG — .

- Dr. Martin Bartonitz,ﬁ Nov. 2009 -

Example of BPM

Receive

BuyConfirmedRes

pondExchange
£y

E Send |
a BuyRequestReque
stExcbange Receive:
i EuyFailedRespond
i Exchange
|
| | |
I .
huy(BuyRequest) | buy(BuyConfirmed) : 'Cuy{EuyrFailed)
1
|
I L\ __ N
| . Y
|
|
|
L pondExchange
o
= Receive Send
Lz BuyRequestReque reditCheckReqgue :
stExchange stExchange [
. | Receive
t CreditCheckFailed uyFailedRespond
| espondExchange Exchange
|
__________ |
| |
checkCredit{CreditCheckRequest) checkCredit{CreditCheckilk) : :checkCrEdit(Cl'editCheckInvalid}
f |
D o S ’/
T
|
| 'send
= ! reditgheckOkRe
= : pondExchange
fan |
= Receive
g reditCheckReque '

stExchange Seund l
CreditCheckFailed

espondExchange

. generated based on http://sourceforge.net/apps/trac/pidsoa/wiki/examples .

UML seqguence diagrams

Scenario 1

Scenario 2

Buyer

Store:

CreditAgency:

1: buy(BuyRequest)

wl

2 buy(BuyFailed)

Buyer:

1.1: creditCheckiCreditCheckRequest) |

1.2: creditCheckiCreditCheckInvalid) I|

CreditAgency:

1: buy(BuyRequest)

2: buy(BuyConfirmed)

1.1: creditCheck(CreditCheckRequest) |

1.2: creditCheckiCreditCheckCkK) I:|
|

Integration

« enables the loose coupling between the request
and the concrete provider by matching the Service
Request and Service Implementation.

* this is not only a technical loose coupling
addressing protocols, binding, locations or
platforms, but can also a business semantic loose
coupling performing required adaptations between
service requester and provider.

T.Kubik: ISM

Integration Layer

http://www.opengroup.org/soa/source-book/intro/index.htm

« Provides a level of indirection between the consumer of functionality and its
provider

« Consumers and providers are decoupled (it allows integration of disparate
systems into new solutions).

« Aservice consumer interacts with the service provider via the Integration Layer.

« Each service interface is only exposed via the Integration Layer (e.g., ESB),
never directly

* point-to-point integration is done at the Integration Layer instead of
consumers/requestors doing it themselves.

| on . .
Consumer ntegratio Service Provider
Layer
Input
............ -
Deliver Input
Fesponse
R g g
Deliver Response

http://www.opengroup.org/soa/source-book/soa refarch/pl3.htm#figuredl
T.Kubik: ISM

Integration layer capabillities

« Communication, Service Interaction, and Integration:

— ability to route requests to correct the provider after necessary message
transformation and protocol conversion

— ability to connect the service requestor to the service provider and its
underlying solutions platforms realizing the requested service.

— ability to discover services and, at runtime, to support the virtualization of
services so that changes to the end-points (or locations from where the
services are called and where the services are provided) can occur without
impact to service consumers and service providers.

« Message Processing:

— ability to perform the necessary message transformation to connect the
service requestor to the service provider and to publish and subscribe
messages and events asynchronously.

* Quality of Service:

— handling of transactions and exceptions and other NFRs (non-functional
requirements)

« Security:
— helps in enforcement of access privileges and other security policies.
« Management:
— ability to maintain service invocation history and monitor and track the service

|ii iiiii‘iii https://msdn.microsoft.com/en-us/library/££647962.aspx

Integration layer <>

Portal Integration

e cah be used to orchestrate the
activities across multiple
applications and to keep track Syetom Syetom Syetom Syetom
of state.
* is likely to require additional
effort, but it manages all Applcations and Services

interactions from a central point
without applications requiring
iInformation about each other L l] i] l}

Entity Aggregation

 Three approaches towards
Integrating layers: o R R Syswn
— Entity Aggregation
— Process Integration S0 Pocssimegaien |-
— Portal Integration l L L L
System 1 System 2 System 3 System 4

https://msdn.microsoft.com/en-us/library/f£647962.aspx

T.Kubik: ISM

Data Warehouse architecture

Three-Tier Architecture

1
1
| Monitor E :
i | Metadata & : :
: Integrator J '
. i :
\ \ ' :
' 1
Extract e : '
Transform i ats ' Serve '
Refresh 4 : : :
' 1
i]
(] ']
~ $ & & -
I 1
) i

B s

 usually three layers:
— Data Source Layer,
— Integration Layer,
— Presentation Layer

OLAP
Server

other
sources

|

Operational
DBs

Query/Reporting

|nl

Data Mining

: Data Marts Server {
- ~ R — .\ v - —— |
Data Sources Data Storage OLAP Engine Front-End Tools

Data Warehouse Architecture
https://www.codeproject.com/Articles

i Operational " I 4 ™\ ﬁ /124184 9/Designing—and—lmplementing—
» - —_ - —_
System Integration Data Warehouse a-Data-Warehouse-in-the
L
| = [
1.‘!:!:'. ODS E::>[:E;;]
Data Vault
Staging Data
P _
pp'y(haln w
/ \ P,

https://www.tutorialspoint.com/sap bods/dw overview.htm

Integration Layer
Data integration

« ETL (Extract-Transform-Load)

— In the Extract step, data is moved from the Source layer and
made accessible in the Integration layer for further
processing,

— the Transformation step involves all the operational activities
usually associated with the typical statistical production
process,

— as soon as a variable Is processed in the Integration layer in a
way that makes it useful in the context of data warehouse it
has to be Loaded into the Interpretation layer and the Access
layer.

http://www.dataintegration.info/etl

T.Kubik: ISM

20 Best ETL / Data Warehousing
Tools In 2019

* QuerySurge

« MarkLogic

« Panoply

* Oracle
 Amazon RedShift

https://www.guru99.com/top-20-etl-database-warehousing-tools.html

T.Kubik: ISM

Presentation Layer - patterns

http://www.corej2eepatterns.com/PatternRelationships.htm

* Intercepting Filter
— Intercepts incoming requests and outgoing responses and applies a filter.
« Context Object

— Encapsulates state in a protocol-independent way to be shared throughout
your application

* Front Controller

— A container to hold the common processing logic that occurs within the
presentation tier

» Application Controller

— Centrali_zes control, retrieval, and invocation of view and command
processing

* View Helper
— IEn(_:ourages the separation of formatting-related code from other business
ogic
« Composite View
— suggests composing a View from numerous atomic pieces
» Dispatcher View
— defers business processing until view Erocessing has been performed.

https://stackabuse.com/java-j2ee-design-patterns

httis://www.oracle.com/iava/technoloiies/interceitini—filter.html

https://stackabuse.com/java-j2ee-design-patterns

Business Layer - patterns

¢ Patterns http://www.corej2eepatterns.com/PatternRelationships.htm

— Business Delegate

- reduces coupling between remote tiers and provides an entry point for accessing remote
services in the business tier.

— Service Locator
« encapsulates the implementation mechanisms for looking up business service components.

— Session Facade

- provides coarse-grained services to the clients by hiding the complexities of the business
service interactions.

— Application Service

- centralizes and aggregates behavior to provide a uniform service layer to the business tier
services.

— Business Object
» implements your conceptual domain model using an object model.
— Composite Entity
« implements a Business Object using local entity beans and POJOs.
— Transfer Object
« provides the best techniques and strategies to exchange data across tiers
— T O Assembler
« constructs a composite Transfer Object from various sources

— Value List Handler
» uses the GoF iterator pattern to provide query execution and processing services

T.Kubik: ISM

Integration Layer - patterns

 Patterns

— Data Access Object
« enables loose coupling between the business and resource tiers

— Service Activator

* enables asynchronous processing in your enterprise applications
using JMS.

— Domain Store
* provides a powerful mechanism to implement transparent
persistence for your object model.

— Web Service Broker

* exposes and brokers one or more services in your application to
external clients as a web service using XML and standard web
protocols

http://www.corej2eepatterns.com/DataAccessObject.htm
http://www.corej2eepatterns.com/ServiceActivator.htm
http://www.corej2eepatterns.com/DomainStore.htm

http://www.corej2eepatterns.com/WebServiceBroker.htm

T.Kubik: ISM

http://www.corej2eepatterns.com/WebServiceBroker.htm

Facade pattern

« adds an interface to existing system to hide its complexities

(structural pattern)
« applies to the complex or poorly designed subsystems

6 «Java Class» «Java Interfaces «lava Class»
ConcreteFacade €% AbstractFacade alses (2 Demo

o modulel : AbstractSubsystem’
g module2 ; AbstractSubsystem2
o ConcreteFacade(abstractSubsystem 1, AbstractSubsystemz2) -

@ greet() : void - mTmmTTTTTmmmmmmsssssssssoommooee-

& greet() : void o main(String[]) : void

w58 OCL:,ISEI-

|‘|’.I' W
o «lava Interface= _suses «)ava Interfaces |
Sstaciukeysteml) AbstractSubsystem2 slis@n |
A etri ST
r',._ getName() ' 5”‘”9 T i ¢ computeAgeiabstractSubsystem, int) ¢ int
& getYearOfBirth() : int i | 7
F : -
«)ava Class» | Muser «Java Class» cusen !
© Subsystem1 {2 Subsystem2 o i
o name : String ;
g yearOfBirth : int @ Subsystem2()
o Subsystem 1(String, int) & computedge(dbstractSubsystem, inf) © int !
sll5ew |
@ gethamel) | String oo oo s -
@. getYearOfBirth() : int

T.Kubik: ISM

Flyweight pattern

* reduces the number of objects created (structural pattern),
decreases memory footprint, increases performance

« allows to reuse already existing objects by storing them and
creating new objects only when no matching object is found

«]ava Classs

=Java Classs» - e e mmee]
(2 AbstractFlyweight “lser (2 Demo

.................................

¢ greet(String) : void User o main(string[]} : void

& getSharedState() : String |- —--———-———--- [.

= Java Class» .
(2 ConcreteFlyweight <---
o sharedState ! String
@ ConcreteFlyweight(String)
@. greet(String) : void
@. getSharedState() : String

T.Kubik: ISM

m@gen

«Java Class»
(3 FlyweightFactory
o flyweights : AbstractFlyweight [*]
@ FlyweightFactory(
@ registerfFlyweight(String, AbstractFlyweight) : void
@ getFlyweight(String) : AbstractFlyweight

Service component as a facade

XML via HTTP Package
Z/ - X
: WS o]
Application ji Service |_ .
B Eisie ﬂ » component|” ;
A ‘

Package

https://www.ibm.com/developerworks/library/ar-archtemp/index.html

T.Kubik: ISM

