
IInternet nternet EngineeringEngineering

Tomasz Tomasz BabaczyBabaczyńńskiiskii, Zofia , Zofia KruczkiewiczKruczkiewicz
Tomasz KubikTomasz Kubik

InformationInformation systemssystems modellingmodelling –– UML UML andand
serviceservice descriptiondescription languageslanguages

RDF -Resource Description Framework

RDF

• It is a framework for representing information about
resources in a graph form
– primarily intended to describe metadata about WWW

resources

– can be used to describe anything that can be identified on
the Web, even if it is not accessible

• RDF description can be read and understand by
computers, and exchanged without loss of meaning

• W3C maintains RDF in the scope of its Semantic Web
Activity

RDF facts

• W3C Recommendation on 10 February 2004

– RDF-CONCEPTS,

– RDF-SYNTAX,

– RDF-VOCABULARY,

– RDF-SEMANTICS,

– RDF-TESTS, RDF-PRIMER

Resource

• RDF can represent anything that can be named: an
object, act, or concept:
– Abstract ideas as “classess”, “properties”, “groups”, “sets”

– Abstract terms, as “love” or “money”

– Real world objects, as “rock” or “sand”

– Web resourvces

– …

• In RDF sense “named” means “identified by URI”

• RDF uses URIs to identify resources, or, more
precisely, URIRefs.

URI
• Uniform Resource Identifier is a global, rigid resource identifier with the

following syntax:

scheme ":" hier_part ["?" query] [# fragment]

scheme – string (a letter followed by letters, digits, and ["+"|"."|"-"])

hier_part – has the following syntax:

[userInfo "@"] hostname [:port_number] [path]

query – optional information, commonly organized as a sequence of:
<key>=<value> pairs, separated by ";" or "&"

fragment – optional part (local reference)

Example:

http://example.org/family.rdf#fatherOf

URIRef
• The syntax of URI has been defined in [RFC2396] and updated

in [RFC2732]

• The current generic URI syntax specification is [RFC3986].

• URI can be absolute or relative:
– Absolute : a resource is identified with full and context independent

resource reference

– Relative : a reference has not given full information to identify a
resource and missing information must be derived from the context

• A URIRef is relative form of URI
– consists of URI and optional fragment preceded by #

– absolute URI of #section2 from the document
http://www.example.org/index.html is
http://www.example.org/index.html#section2

IRI
• Internationalized Resource Identifier is a a complement to URI

• provides wider repertoire of characters allowed

– Unicode/ISO10646 characters beyond U+007F

– private characters of that set can occur only in query parts

• Standardized in [RFC3987] that defines "internationalized"
versions corresponding to other constructs from [RFC3986],
such as URI references.

• In many cases URI and IRI are used interchangeably, but
practical replacement of URIs (or URI references) by IRIs (or
IRI references) depends on the application.

Statement

• RDF is based on Graph data model

• Represented by the triple: <subject, predicate, object>.
– The triple links one object (subject) to another object (object) or a

literal via a property (predicate).

– In other words: a resource (subject) has a property (predicate) valued
by property value (object).

• RDF requires that:
– subject has URI or is b-node;

– predicate has URI;

– object has URI, is b-node or is literal.

• The same URI can be assigned to a node and to an arc as well.

Remarks on statements

• RDF model = set of RDF triples

• triple = (subject, predicate, object) = statement

– subject = resource

– predicate = property (of the resource)

– object = value (of the property)

• URIRefs identify subject, predicate, and object

Remarks on namespaces

• Some domain names appearing in the URL

authority part have been reserved for testing

or other similar uses [RFC2606]

• example.com, example.net, or

example.org do not refer to any existing

resources but serve for illustrative purposes

RDF Graph

• Graphical representation of a triple

– subject and object nodes are resources

– object node is a literal

Subject Object
Predicate

Subject Object
Predicate

RDF graph example

• “John Smith is a father of Susan Smith”

• Both persons are identified by their e-mail addresses and their names are
provided as typed literals.

mailto:John@example.org
http://example.org/family.rdf#fatherOf

mailto:Susan@example.org

"John Smith"^^xsd:string

http://example.org/family.rdf#name

"Susan Smith"^^xsd:string

http://example.org/family.rdf#name

Complex values

• Each triple in RDF graph is known as a ‘property’.

• Nodes may have more than one arc originating from them,
indicating that multiple propertyTypes are associated with the
same resource.

• Groups of multiple properties are known as ‘descriptions’.

• PropertyTypes may point to simple atomic values (strings and
numbers) or to more complex values that are themselves
made up of collections of properties.

• syntactically, the values can be embedded (lexically in-line) or
referenced (linked)

More complicated RDF graph

• formal model with a

bag and a blank node

• informal model with a

bag

Literal-0

Literal-4

URI-p0

URI-0
URI-1

URI-2

URI-3

Literal-1

Literal-3

URI-p1

URI-p2

URI-p3

URI-p2

URI-p4

URI-4

rdf:bag
rdf:type

rdf:_1

rdf:_2

rdf:_3

URI-0

Literal-0

URI-1

URI-2

URI-3

Literal-1

Literal-3
Literal-4

URI-p0

URI-p1
URI-p2

URI-p3

URI-p2

URI-p4

URI-4

blank node (b-node)
• is a node of RDF graph, which is not identified by a URI and

is not a literal

• is a graph scoped identifier that cannot be directly
referenced from outside

• is used mainly for graph branching as for representing
higher arity relations

• it can be used only as a subject or an object of a RDF triple.

• it cannot be used as a predicate (in in some syntaxes like
N3 it is acceptable to use a blank node as a predicate)

• Using b-nodes may cause problems in merging or querying
– possible node ID conflicts (merging)

– temporary node ID assignments (querying)

RDF graph labeling

• URI can be a subject, a predicate or an object

of a triple

• only URI can be a predicate of a triple

• only URI and bnode can be a subject of a triple

• bnode, URI or literal can be an object of a

triple

Literals
• All literals are Unicode strings and represents value such as

string or number

• Literals cannot be the subjects of statements, only the objects
(target nodes in the RDF graphs).

• Literals can be either plain literals (without type) or typed
literals

– Plain literals can have an optional language tag assigned in form of a
suffix starting with @ followed by the language code string (as defined
by [RFC-3066], normalized to lowercase).

– Typed literals have a lexical form ending with a suffix being RDF datatype
URI reference (as in XML Schema Datatypes or an URI of custom
datatype defined). The suffix starts with two caret characters ^^.

Typed literals

• Not all XML Schema datatypes are suitable for the
use in RDF.
– xsd:duration – does not have a well-defined value space;

– xsd:QName and xsd:ENTITY – require an enclosing XML
document context;

– xsd:ID and xsd:IDREF – are for cross references within an
XML document;

– xsd:NOTATION – is not intended for direct use;

– xsd:IDREFS, xsd:ENTITIES and xsd:NMTOKENS – are
sequence-valued datatypes which do not fit the RDF
datatype model.

RDF datatype

• There is no built-in concept of numbers or dates or
other common values in RDF

• RDF predefines just one datatype: rdf:XMLLiteral,
which is used for embedding XML in RDF

• There is no mechanism for defining new datatypes as
well
– It is expected that any new datatypes will be provided

separately, and identified with URI references, as XML
Schema datatypes defined in [XML-SCHEMA2].

Higher-order statements

• One can make RDF statements about other RDF statements

– “Ralph believes that the web contains one billion documents”

– “the creator of the statement that the creator of the document on RDF

syntax is Ora Lassila is the Library of Congress”

• Higher-order statements

– allow us to express beliefs (and other modalities)

– are important for trust models, digital signatures,etc.

– also: metadata about metadata

– are represented by modeling RDF in RDF itself reification

Reification
• Allows to build higher-order statements, i.e. statements

about other RDF statements

• Models of other statements must be created.

• New statements becomes new and accessible resources

• RDF built-in predicate vocabulary for reification:
– rdf:subject

– rdf:predicate

– rdf:object

– rdf:type

“Anne said that John likes Mary"

likes MaryJohn

rdf:subject rdf:predicate rdf:object

Anne
said

RDF serialization

• Serialization provides a way to convert between the

abstract RDF model to a concrete format, such as a

file or other byte stream. The most popular methods

of RDF graphs serialization are:

– RDF/XML, Terse RDF Triple Language (Turtle), and N-

Triples.

• Serialization preserves the constructs of the original

RDF graph.

RDF and RDF Schema (RDFS)
• A set of URIRefs is known as a vocabulary

• RDF vocabulary contains basic terms for expressing simple
statements about resources, using named properties and
values [RDF-CONCEPTS].

• RDFS vocabulary extends RDF vocabulary providing
mechanisms for describing properties and relationships
between these properties and other resources [RDF-
VOCABULARY].

• RDF and RDFS vocabularies can describe relationships
between items from multiple vocabularies developed
independently, usually with the aid of XML namespace
names.

OOP and RDF
• In object oriented-programming languages class definition:

– implies the characteristic of the instances

– is done in terms of the properties its instances may have

• In RDF properties definitions implies the class membership of
the instance.
– RDF describes properties in terms of the classes of resource to which

they apply

– If an instance has a certain property asserted with a domain defined,
this domain specifies the class of this instance

• Naming convention
– the class’s names starts with an upper case letter

– properties names starts with a lower case letter

RDF vocabulary

• namespace: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdf:List

rdf:first

rdf:rest

rdf:nil

rdf:Seq

rdf:Bag

rdf:Alt

rdf:_1

rdf:_2

...

rdf:Statement

rdf:subject

rdf:predicate

rdf:object

rdf:Property

rdf:type

rdf:XMLLiteral

rdf:value

RDF collection

vocabulary

RDF container

vocabulary

RDF reification

vocabulary

RDF property and

type vocabulary

rdf:Property

• is a property (or, more formally, a class of RDF
properties) used for the definition of predicates in
triples.

• Each definition of a property might include
restrictions regarding domain and range (using
concepts from RDFS vocabulary). Even though
properties are classes, they are defined and used
independently of RDFS classes (defined with
rdfs:Class from RDFS vocabulary).

rdf:type

• is a property (or, more formally, an instance of
rdf:Property) used to assert a type to a resource.

• The value of this property is a URI identifying a class
(or, more formally, an instance of rdfs:Class defined
with RDFS vocabulary).

• A triple of the form: R rdf:type C states that C is an
instance of rdfs:Class and R is an instance of C.
Asserting the same type to several resources is
possible, as asserting any other predicates.

rdf:XMLLiteral

• is a special built-in datatype delivered for

assigning XML content as a possible literal

value to a target nodes in the RDF graph.

• In the specification this datatype is described

as an instance of rdfs:Datatype and a subclass

of rdfs:Literal (using RDFS vocabulary).

rdf:value

• is an instance of rdf:Property that may be used in describing
structured values.

• It delivers the actual value for the subject with several
properties

– distance can have rdf:value property with a value "15"^^xsd:decimal,
and ex:unit property with a value, for example "meter"^^xsd:string

• rdf:value has no meaning on its own. It is provided as a piece
of vocabulary that may be used in such idioms.

• The rdfs:domain and rdfs:range of rdf:value is rdfs:Resource
(using RDFS vocabulary).

rdf:Statement

• is a resource reifying a triple

• it must have at least 3 properties valued by

the corresponding resources:

– rdf:subject

– rdf:object

– rdf:predicate

rdf:Alt, rdf:Bag, rdf:Seq

• Concepts used in the description of containers
– rdf:Bag represents a container of unordered elements with duplicates

allowed.

– rdf:Alt is a container of alternative elements, possibly with a
preference ordering, from which one is to be selected.

– rdf:Seq is a container of ordered elements.

• They characterize the types of containers and provide the
information on partial enumeration of their items rather then
construct these containers.

• All they use the rdf:_n to establish the containment
relationship with other resources.

rdf:_1, rdf_2, ...

• these are blank nodes of RDF graph, which are
not absolutely identified by URIs.

• They represent anonymous resources at
which RDF graph branches.

• They are properties, that associate a container
as the subject with a resource it contains as
the object.

rdf:List

• An instance of rdfs:Class that can be used to create

collections known as list or list-like structures.

• Declaration of such collections is similar as in the

programming languages, with a head and the tail and

terminator declarations (for which the concepts of

rdf:first, rdf:last, rdf:nil are used, respectively).

rdf:first

• this concept is used in the description of list and

other list-like structures. It appears in the triples of

the form L rdf:first O. The meaning of such triple is

following: there is a first-element relationship

between L and O. rfd:first is an instance of

rfd:Property. The rdfs:domain of rdf:first is rdf:List

and its rdfs:range is rdfs:Resource.

rdf:rest

• Concept used in the description of list and other list-

like structures.

• It appears in the triples of the form L rdf:last O. The

meaning of such triple is following:

– there is a rest-of-list relationship between L and O.

• rfd:last is an instance of rfd:Property. The rdfs:domain

of rdf:last is rdf:List and its rdfs:range is rdfs:List.

rdf:nil

• is an instance of rdf:List, representing the

empty list or list-like structure.

• rdf:nil appears in the triples of the form: L

rdf:rest rdf:nil

– L is an instance of rdf:List that has one item, that

can be indicated using rdf:first property.

RDSF
• Vocabulary for custom vocabularies creation

• Provides a type system for RDF
– custom classes and properties definitions are possible

– characteristics of other resources, such as domains (to indicate that a
resource is of a particular RDF class) and ranges (to indicate that a
resource is of a specific data type) of properties can be provided.

• Validation against RDF Schema is not the same as validation
against XML Schema
– there is no syntax check against schema

– a graph consistency check is done on demand by reasoning engine

– inconsistent triples may be added to a graph being not detected unless
a consistency check is performed

– traversing class inheritance in order to access and analyze their
properties requires engine with reasoning capabilities

RDFS vocabulary
rdfs:Resource

rdfs:Literal

rdfs:Datatype

rdfs:Class

rdfs:Container

rdfs:ContainerMembershipProperty

rdfs:domain

rdfs:range

rdfs:subClassOf

rdfs:subPropertyOf

rdfs:member

rdfs:comment

rdfs:seeAlso

rdfs:isDefinedBy

rdfs:label

Vocabularies for classes and

properties

• vocabulary for classes:

– rdfs:Class (a resource is a

class)

– rdf:type (a resource is an

instance of a class)

– rdfs:subClassOf (a resource is

a subclass of another

resource)

• vocabulary for properties:

– rdf:Property (a resource is a

property)

– rdfs:domain (denotes the subject of

a property)

– rdfs:range (denotes the object of a

property)

– rdfs:subPropertyOf (expresses

inheritance of properties)

Declarations templates
• P rdf:type C

– C is an instance of rdfs:Class

– P is an instance of C.

• P rdfs:domain C
– P is an instance of the class rdf:Property

– C is a instance of the class rdfs:Class

– subjects of triples whose predicate is P
are instances of the class C.

• P rdfs:range C
– P is an instance of the class rdf:Property

– C is an instance of the class rdfs:Class

– objects of triples whose predicate is P are
instances of the class C.

Person

Man

hasWife

Woman

rdf:domain

rdf:range

rdf:subClassOf

rdf:subClassOf

John

hasWife

Mary

Abstract Concrete

rdf:type

rdf:type

rdfs:domain

• an instance of rdf:Property used in resource definitions in similar manner
to the type declaration

• Usage:
– P rdfs:domain C.

• Meaning:
– P is an instance of the class rdf:Property, and C is an instance of the class

rdfs:Class, and the resources denoted by the subjects of triples whose
predicate is P are instances of the class C.

• The property P can have more than one rdfs:domain property assigned
– subjects of any triples with predicate P are instances of all the classes stated

by the rdfs:domain properties (are instances of more then one class)

• The domain of rdfs:domain is rdf:Property class. The range of rdfs:domain
is rdfs:Class class.

rdfs:range

• An instance of rdf:Property used for range of property values definition in similar
manner to type declaration

• rdfs:range states that the values of a property are instances of one or more
classes.

• Usage:
– P rdfs:range C.

• Meaning:
– P is an instance of the class rdf:Property, C is an instance of the class rdfs:Class and the

resources denoted by the objects of triples whose predicate is P are instances of the
class C.

• The property P can have more than one rdfs:range property assigned
– the resources denoted by the objects of triples with predicate P are instances of all the

classes stated by the rdfs:range properties.

• The domain of rdfs:range is rdf:Property class. The range of rdfs:range is the
rdfs:Class.

rdfs:Resource

• A class, instances of which can be all things

described by RDF as resources.

• It is the class of everything.

• All other classes are subclasses of this class.

• rdfs:Resource is an instance of rdfs:Class.

rdfs:Literal

• A class representing values such as numbers and dates used
as the range of properties.

• Literals may be
– plain ("October, 1, 2010"@en)

– typed ("2010-01-10"^^xsd:date).

• String in literals are recommended to be in Unicode Normal
Form C [http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/#ref-nfc].

• Typed rdfs:Literal is an instance of rdfs:Class,

• rdfs:Literal is a subclass of rdfs:Resource

rdfs:Datatype
• A class used to assert that a literal should be interpreted in a particular

way

• A datatype is defined abstractly by
– two domains: one of lexical forms and one of values

– and a mapping from lexical forms to values.

• A datatype is identified by one or more URI references

• Some external mechanism recognises a datatype URI, accessing and
making use of appropriate representations of the domains and map.

• Each instance of rdfs:Datatype is a subclass of rdfs:Literal. rdfs:Datatype is
both an instance of and a subclass of rdfs:Class

ex:octalnumber rdf:type rdfs:Datatype .

Judy ex:age _:y .

_:y ex:octalnumber "35" .
{<"true", T>,

<"1", T>, <"0", F>,

<"false", F>}

Lexical-to-Value

Mapping

{"0", "1", "true",

"false"}
Lexical Space

{T, F}Value Space

rdfs:Class
• Classes are themselves resources.

• Once declared, the RDF class can be used as a value of
rdf:type property.
– The subject of the corresponding triple becomes implicitly an instance

of the class.

• The members of a RDF class are instances of the class
– the set of instances is the extension of the class, and two different

classes may contain the same set of instances

– class and a set of class’ instances do not have to be the same

• rdfs:Class is an instance of rdfs:Class, and is the class of
classes. The group of resources that are RDF Schema classes
is itself a class called rdfs:Class.

rdfs:subClassOf

• A property used to form a taxonomy of classes by

extending existing classes.

• It might be used to state that one class is a subclass

of another.

– Extension reuses (and thus shares) existing definition(s). A

class can have multiple superclasses.

– If a class C is a subclass of a class C', then all instances of C

will also be instances of C'.

rdfs:subPropertyOf

• A property used to form a taxonomy of

properties in a similar way as rdfs:subClassOf

in a classes case.

rdfs:member

• A property that is a super-property of all the

container membership properties, each

container membershi property has an

rdfs:subPropertyOf relationship to the

property rdfs:member.

rdfs:Container

• A class used to represent the core RDF

Container classes, ie. rdf:Bag, rdf:Seq, rdf:Alt.

rdfs:ContainerMembershipProperty

• A class, instances of which are properties: rdf:_1,
rdf:_2, rdf:_3 ... stating, that a resource is a member
of a container.

• rdfs:ContainerMembershipProperty is a subclass of
rdf:Property.

• Each instance of rdfs:ContainerMembershipProperty
is an rdfs:subPropertyOf the rdfs:member property.

• Container membership properties might be applied
to resources other than containers.

rdfs:comment

• An instance of rdf:Property that may be used

to provide a human-readable description of a

resource, clarifying its meaning. Multilingual

documentation is supported through use of

the language tagging facility of RDF literals.

rdfs:seeAlso

• An instance of rdf:Property that is used to

indicate a resource that might provide

additional information about the subject

resource.

rdfs:isDefinedBy

• An instance of rdf:Property that is used to
indicate a resource defining the subject
resource.

• This property might be used to indicate an
RDF vocabulary in which a resource is
described. rdfs:isDefinedBy is a subproperty of
rdfs:seeAlso.

rdfs:label

• An instance of rdf:Property that may be used

to provide a human-readable version of a

resource's name.

• Multilingual labels are supported using the

language tagging facility of RDF literals.

Concepts details

rdfs:Classrdf:Property
rdf:_1... properties expressing

membership

rdfs:Container

MembershipProperty

rdfs:Classrdfs:Container containers of alternatives rdf:Alt

rdfs:Classrdfs:Container ordered containers rdf:Seq

rdfs:Classrdfs:Container unordered containers rdf:Bag

rdfs:Classrdfs:Resource containers rdfs:Container

rdfs:Classrdfs:Resource lists rdf:List

rdfs:Classrdfs:Resource statements rdf:Statement

rdfs:Classrdfs:Resource properties rdf:Property

rdfs:Datatyperdfs:Literal XML literal values rdf:XMLLiteral

rdfs:Classrdfs:Class datatypesrdfs:Datatype

rdfs:Classrdfs:Resource literal values rdfs:Literal

rdfs:Classrdfs:Resource all classes rdfs:Class

rdfs:Classrdfs:Resource all resources rdfs:Resource

rdf:typerdfs:subClassOfClass ofElement

Roles and restrictions

rdfs:Resource rdf:Statement subject declaration rdf:subject

rdfs:Resource rdf:Statement predicate declaration rdf:predicate

rdfs:Resource rdf:Statement object declarationrdf:object

rdfs:Resource rdfs:Resource used for structured values rdf:value

rdfs:Resource rdfs:Resource subject definition info rdfs:isDefinedBy

rdfs:Resource rdfs:Resource additional information rdfs:seeAlso

rdfs:Resource rdfs:Container container membership rdf:_1,rdf:_2, ...

rdf:List rdf:List rest of a list declarationrdf:rest

rdfs:Resource rdf:List first element declarationrdf:first

rdfs:Resource rdfs:Resource container membership rdfs:member

rdfs:Literal rdfs:Resource human readable comment rdfs:comment

rdfs:Literal rdfs:Resource human readable label rdfs:label

rdf:Property rdf:Property subproperty declarationrdfs:subPropertyOf

rdfs:Class rdfs:Class subclass declaration rdfs:subClassOf

rdfs:Class rdfs:Resource instance declaration rdf:type

rdfs:Class rdf:Property restriction on object rdfs:domain

rdfs:Class rdf:Property restriction on subject rdfs:range

rdfs:rangerdfs:domainRoleElement

N-Triples serialization

<mailto:John@example.org>

<http://example.org/family.rdf#fatherOf>

<milto:Susan@example.org> .

<mailto:John@example.org>

<http://example.org/family.rdf#name> "John

Smith"^^<http://www.w3.org/2001/XMLSchema#string> .

<mailto:Susan@example.org>

<http://example.org/family.rdf#name> "Susan

Smith"^^<http://www.w3.org/2001/XMLSchema#string> .

TURTLE serialization

@prefix ex: <http://example.org/family.rdf#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

This is a comment.

<mailto:John@example.org>

ex:fatherOf <milto:Susan@example.org> ;

ex:name "John Smith"^^xsd:string .

<mailto:Susan@example.org> ex:name "Susan

Smith"^^xsd:string .

RDF/XML serialization

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:ex="http://example.org/family.rdf#">

<rdf:Description rdf:about="mailto:John@example.org">

<ex:fatherOf rdf:resource="milto:Susan@example.org" />

<ex:name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">John

Smith</ex:name>

</rdf:Description>

<rdf:Description rdf:about="mailto:Susan@example.org">

<ex:name
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Susan

Smith</ex:name>

</rdf:Description>
</rdf:RDF>

RDF/XML

• RDF/XML is a normative language for serializing RDF graph in
a computer-readable form

• RDF/XML document starts with rdf:RDF element declaration
having series of rdf:Description elements embedded.

• The list of attributes of rdf:RDF element contains XML
namespace declarations.

• The definitions of elements used in RDF/XML serialization are
given in RDF/XML document, which is available under the link
http://www.w3.org/1999/02/22-rdf-syntax-ns. That
document defines RDF itself (RDF Schema for the RDF
vocabulary defined in the RDF namespace).

Statements in RDF/XML
• Are declared in the scope of <rdf:Description> elements.

– <rdf:Description> element can group several statements with the same
subject and different predicates and objects.

– names of nested elements or names of element’s atrributes represent
predicates

– rdf:about attribute declares subject

• If an object of the statement is a resource, it is represented by
the value of rdf:resource predicate’s attribute.

• If an object of the statement is a literal, it is represented by the
predicate’s content (if the predicate is an element) or by the
predicate’s value (if the predicate is an attribute).

Statement example

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description

rdf:about="http://example.org/myFamily.rdf#John">

<rdf:type rdf:resource="http://example.org/terms#Father" />

</rdf:Description>

</rdf:RDF>

rdf:type
• This predicate is used to assign types to nodes as presented

• A shorthand syntax for declaration of typed node elements:

<type rdf:about="resource" />

– type is URI of the value of the rdf:type predicate assigned to resource

– in a case of multiple rdf:type predicates only one can be used in this
way, the others must remain as property elements or property
attributes

• Further abbreviation incorporates the use of xml:base attribute

– this attribute is used to resolve relative RDF URI references

– the base URI set applies to rdf:about, rdf:resource, rdf:ID and
rdf:datatype

rdf:ID
• The rdf:ID attribute on a node element (not property

element, that has another meaning) can be used instead of
rdf:about
– When used, it gives a relative RDF URI reference equivalent to #

concatenated with the rdf:ID attribute value.

– rdf:ID is useful for defining a set of distinct, related terms relative to
the same RDF URI reference.

– Such terms can not appear more than once in the scope of an
xml:base value (or document, if none is given) what is automatically
checked by the XML editing tools.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://example.org/myFamily.rdf"

xmlns:ex="http://example.org/terms#" >

<ex:Father rdf:about="#John" />
<ex:Father rdf:ID="John" />

</rdf:RDF>

Resource
• Resources can appear:

– as elements’ names (subjects or predicates)

• the URI identifying a resource have to be abbreviated

using standard XML namespace conventions (like

ex:Father).

– values of attributes (objects).

• the URI can be abbreviated applying XML entity

declarations (like rdf:about="&base;#John"). The

example below shows both cases.

Resource example

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE rdf:RDF [

<!ENTITY base "http://example.org/myFamily.rdf">

]>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"

xml:base="&base;"

xmlns:ex="http://example.org/terms#" >

<ex:Father rdf:about="&base;#John" />

<ex:Father rdf:ID="John" />

</rdf:RDF>

Literals
• Can appear in an every place where property value is expected: as attributes of

elements or as contents of property nodes but with some restrictions.
– The plain literals can appear as either property attributes or property nodes values,

while the typed literals (XML or custom typed) only as property node contents.

• In the example below the literal "John Smith" appeared as a value of ex:name
property attribute (declared in the namespace
xmlns:ex="http://example.org/terms#").
<ex:Father rdf:about="#John" ex:name="John Smith"/>

• The same effect can be received by inserting this literal into the content of a
property node <ex:name> as in the example below:
<rdf:Description

rdf:about="http://example.org/myFamily.rdf#John">

<rdf:type
rdf:resource="http://example.org/terms#Father" />

<ex:name>John Smith</ex:name>

</rdf:Description>

Plain literals

• when declared as a property node content, can have an
optional indicator of the content’s language. This indicator is
provided as a value of an optional rdf:lang attribute. In fact,
this attribute can be used on any node element or property
element to indicate that the included content is in the given
language.

• The set of valid language indicators must be lowercased and
match language tags as defined by RFC 4646

Typed literals

• Holds the content of the type declared using

rdf:datatype attribute.

• The value of this attribute should be a datatype URI

as defined in XML Schema or a custom datatype URI.

• In the example below "33" string will be interpreted

as an integer number.

<ex:age

rdf:datatype="http://www.w3.org/2001/XMLSchema#int">33</ex:age>

XML literal

• For an XML literal, an attribute rdf:parseType should

be used with a value set to "Literal" string. If so, the

contents of the property node can be any XML

document (as shown in the example below).

<rdf:Description rdf:about="http://example.org/myFamily.rdf#John's_car">

<ex:record rdf:parseType="Literal" >

<ex:color>red</ex:color>

<ex:checkDates>

<ex:lastCheck>2009-02-03</ex:lastCheck>

<ex:nextCheck>2012-02-02</ex:nextCheck>

</ex:checkDates>

</ex:record>

</rdf:Description>

</rdf:RDF>

Comments

• As in any other XML document the comments

can be provided within tags composed from

characters <!-- and -->. But the comments are

not a part of RDF graph and can disappear in

serializing-deserialising round trip.

Blank node
• Can be represented by a nested element.

<Description

rdf:about="http://example.org/myFamily.rdf#John">

<ex:likes>

<ex:Woman ex:name="Ann" />

<ex:likes>

</Description>

"Ann"ex:Woman

http://example.org/myFamily.rdf#John
ex:likes

b-node

ex:namerdfs:type

rdf:nodeID

• An attribute rdf:nodeID allows multiple use of the same blank node
– rdf:nodeID="b-node identifier" replaces rdf:about="RDF URI reference" when

declaring blank node (the place for declaration of b-node with an identifier is
Description element) or

– replaces rdf:resource="RDF URI reference" when declaring property element
(the place where reference to b-node identified is used is nested element).

<Description rdf:about="http://example.org/myFamily.rdf#John">

<ex:likes rdf:nodeID="b1"/>
</Description>

<Description rdf:about="http://example.org/myFamily.rdf#Adam">

<ex:likes rdf:nodeID="b1"/>

</Description>

<Description rdf:nodeID="b1">
<ex:name>Meryl Streep</ex:name>

</Description>

Containers and collections
• Are declared as nested rdf:Bag, rdf:Seq, rdf:Alt

elements – nodes of the RDF graph with a type
property reflecting container’s type.

• The rdf:about attribute can provide URIs identifyig
these nodes. Without this attribute any given
container becomes b-node.

• The elements nested in a container are rdf:_n or
rdf:li . These elements are interpreted as properties
of the container’s node with values defined by
rdf:resource attribute.

Containers example
<?xml version="1.0"?>

<rdf:RDF xmlns:ex="http://example.org/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://example.org/Tournament">

<ex:hasCompetitors>

<rdf:Bag rdf:about="http://example.org/Competitors">

<rdf:li rdf:resource="http://example.org/Adam" />

<rdf:li rdf:resource="http://example.org/Witold" />

<rdf:li rdf:resource="http://example.org/Tomasz" />

</rdf:Bag>

</ex:hasCompetitors>

<ex:hasStages>

<rdf:Seq rdf:about="http://example.org/Stages">

<rdf:li rdf:resource="http://example.org/Preliminary" />

<rdf:li rdf:resource="http://example.org/Group" />

<rdf:li rdf:resource="http://example.org/Final" />

</rdf:Seq>

</ex:hasStages>

<ex:hasPlace>

<rdf:Alt rdf:about="http://example.org/Playgrounds">

<rdf:li rdf:resource="http://example.net/Playground1" />

<rdf:li rdf:resource="http://example.net/Playground2" />

</rdf:Alt>

</ex:hasPlace>

</rdf:Description>

</rdf:RDF>

Terse RDF Triple Language (Turtle)

• The simplest and most concise serialization
syntax for RDF used in many textbooks and
tutorials.

• Its human-friendly and readable syntax was
designed specifically for RDF.

• Turtle is not an XML language, and therefore
it has no support from XML editors.

Statements
• All parts of the statement, as subject, predicate, and object,

should be written on a line, separated by white spaces and
terminated with a period.

• The statements can be written in consecutive line if there are
multiple statements about the same subject. This shorthand
way relies on writing shared subject followed by a sequence of
pairs composed from predicate and object of the statements,
separated with a semicolon and terminated with a period.

exf:John rdf:type ext:Father .

exf:John ext:name "John Smith" .

An equivalent, shortened form of these declarations is as

follows:

exf:John rdf:type ext:Father ;

ext:name "John Smith" .

Further statement shortening

• Statements having the same both subject and
predicate can be shortened.
– the shared subject and predicate should be followed by

the objects of statements, separated with a comma and
terminated with a period

exf:John ext:likes "Meryl Streep" .

exf:John ext:likes "Another name".

• can be written as:
exf:John ext:likes "Meryl Streep",
"Another name" .

Reification

• The reification of statements can be written

shortly as in example:

[a rdf:Statement;

rdf:subject exf:John;

rdf:predicate ext:likes;

rdf:object "Meryl Streep"] .

Resources
• Are identified with URIs that are either

– fully qualified identifiers or enclosed within sharp braces:
< and >

– identifiers build from a declared prefix and extension .

• The declaration of the prefix should be written on a
line, starting with @prefix keyword, followed by the
prefix name and a leading part of URIref enclosed
within sharp braces. All these three parts should be
separated by white spaces.

Typed resources
• The type of the resource can be declared with rdf:type predicate, written on

line between the resource and the type URI.

• Shortened syntax it is similar to the use of rdf:type predicate, with a character
a used instead of rdf:type.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ext: <http://example.org/terms#> .

@prefix exf: <http://example.org/myFamily.rdf#> .

the statement example comment

ex:John rdf:type ex:Father .

• The equivalent statement using a
ex:John a ex:Father .

• and using fully qualified URIs
<http://example.org/terms#John>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://example.org/terms#Father> .

Literals

• Writing literals in Turtle depends on whether they are plain, data-typed or
language tagged

• Literals are written as strings enclosed in double quotes (in a case of string
without line break character) or as strings limited by the set of three double
quotes on both sides (in a case of string containing line break).

• Since double quote is a special character, it appears in the literal-string values
written as \" (U+0022). Similar escapes are used to encode surrounding syntax,
non-printable characters and to encode Unicode characters by codepoint
number (although they may also be given directly, encoded as UTF-8).

@prefix ex: <http://example.org/> .

ex:Book ex:hasMotto ""“First line of the \"motto\",

and next line,

and final line.""" .

Datatyped and language tagged

literals
• Datatyped literals are written with ^^ suffix, followed by

any legal URI form giving the datatype URI.

• The language tagged literals are written with @ suffix
followed by the valid character language tag. Literals might
be given either a language suffix or a datatype URI but not
both.

@prefix ex: <http://example.org/> .

ex:Bridge ex:numberOfCards
"52"^^<http://www.w3.org/2001/XMLSchema#int> ;

ex:Bridge ex:name "Bridge"@en ;

ex:Bridge ex:name "BrydŜ"@pl.

Comments

• Lines starting with # character

• The Turtle parser will ignore all text after this

character to the end of the line.

Blank nodes
• b-node identifier starts with a prefix, which is colon, followed by a node ID

• It is possible to define a blank node without b-node identifier using of a pair of square brackets [and]

• All the statements written within these brackets have an unnamed b-node as the subject

ex:Furniture ex:hasDescription :Furniture-01 .

:Furniture-01

ex:name "chair"@en, "krzesło"@pl;

ex:color "brown"@en, "brązowy”@pl;

ex:productionDate "2010-12-01"^^^<http://www.w3.org/2001/XMLSchema#date> .

ex:Furniture ex:hasDescription [ex:name "chair"@en, "krzesło"@pl;

ex:color "brown"@en, "brązowy”@pl;

ex:productionDate "2010-12-01"^^^<http://www.w3.org/2001/XMLSchema#date>]
.

@prefix : < http://example.org/myFamily.rdf > .

:#John a ex:Father .

: #John rdf:type ex:Father .

Containers and collections
• Starts with a line containing the subject, keyword a and one of the

following terms: rdf:Bag, rdf:Seq and rdf:Alt. The consecutive line
includes list of predicates of the form, rdf: 1, rdf: 2, rdf: 3, . . . , rdf
n together with associated resources.

• All lines should end with a semicolon, except last, ended by dot.
The numbers near by rdf: terms can be ignored in the declarations
of rdf:Bag and rdf:Alt containers, but not in rdf:Sequence.

ex:Stages a rdf:Seq ;

rdf:_1 ex:Preliminary ;

rdf:_2 ex:Group ;

rdf:_3 ex:Final .

ex:Stages a rdf:Seq ;

rdf:_1 ex:Preliminary ;

rdf:_2 ex:Group ;

rdf:_3 ex:Final .

ex:Playgrounds a rdf:Alt ;

rdf:_1 <http://example.net/Playground1> ;

rdf:_2 <http://example.net/Playground2> .

ex:Tournament ex:hasCompetitors

ex:Competitors .

ex:Tournament ex:hasStages ex:Stages .

ex:Tournament ex:hasPlace ex:Playgrounds .

Ordering of elements in rdf:Sequence
• If the sequence is declared once, using predicates as rdf: n is

straightforward. However, inserting any new elements into
existing structure can cause some problems. If this did
happen, several predicates would need to be re-enumerated.

• The solution is the use of rdf:li predicate. This predicates
substitutes any of rdf: n predicates.

• When used, the order in which rdf:li predicates appear in the
document is significant. The first resource of the group
associated with rdf:li becomes rdf: 1, the second rdf: 2, and so
on.

• Resources declared in such a way will not be altered even
when different RDF graphs are merged.

Collections

• Are based on the concept of head-tail links.
Starts with a subject, keyword a, followed
by the rdf:List term, rdf:first (head) and
rdf:rest (tail) predicates with identifiers.

• rdf:first usually refers to the object, rdf:rest
to the b-node being a subjects of another
collection declaration.

• The objects of rdf:first predicates are the
members of collection being declared.

• The terminator of such recursive
declaration is rdf:rest predicate, whose
object is rdf:nil (tail referring to nil).

ex:Sponsors a rdf:List ;

rdf:first cmp:Company1 ;

rdf:rest :r1 .

:r1 a rdf:List ;

rdf:first cmp:Compan2 ;

rdf:rest :r2 .

:r2 a rdf:List ;

rdf:first cmp:Company3 ;

rdf:rest rdf:nil .

ex:Tournament ex:hasSponsors (cmp:Company1 cmp:Company2 cmp:Company3) .

ex:Tournament ex:hasSponsors ex:Sponsors .

N-Triples

• is based on the same syntax for comments,

resources and literal values as in Turtle, but

imposes some simplifying restrictions, as:

– missing @prefix directive,

– missing shorthand notion with semicolon or coma,

– necessity of writing statements (triples) in a single line.

Managing RDF graphs

Viewing

• RDF Gravity

• IsaViz

• dot

• Jambalaya

• W3C RDF

Validator

Creating

• any text editor

• graphical editor

(IsaViz)

• Programmatically

Storing

• Sesame

• 3-Store

• JENA

• RDF-API for

PHP

Storing RDF

• RDF graphs can be serialized as files (see

example later) and stored in the file system

• RDF repositories provide

– Query functionality

– Access control

– Distribution

Querying RDF

• Several query languages exist to retrieve
resulting triples from RDF

– RDQL

– SERQL

– SPARQL

• These languages use triple patterns as input
and return matching triples as results

SPARQL

PREFIX

ex: <http://example.com/myOntology#>

SELECT ?capital ?country

WHERE { ?x abc:cityName ?capital.

?y ex:countryName ?country.

?x ex:isCapitalOf ?y.

?y ex:isInContinent ex:Europe. }

RDF tools

C++ Both Virtuoso

HTTP (Hosted) CommercialTalis Platform

Java Open-source Sesame

C, many wrappersOpen-sourceRedland

PerlOpen-sourceRDF::Query

SQL / SPARQLCommercial Oracle RDF

Java Open-source Mulgara

Java Open-source Jena

Java, Prolog Commercial AllegroGraph

PHP Open-source ARC

JavaBothAnzo

EnvironmentCommercial or Open-sourceTool

